
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Institut National Polytechnique de Toulouse (INP Toulouse)

Présentée et soutenue le 14 Décembre 2020 par :
Adam Shimi

On the Power of Rounds: Explorations of the Heard-Of Model

JURY
Bernadette
Charron-Bost

Directrice de Recherche Rapportrice

Rachid Guerraoui Professeur Rapporteur
Xavier Thirioux Professeur Président du Jury
Emmanuelle Anceaume Directrice de Recherche Examinatrice
Sébastien Tixeuil Professeur des universités Examinateur
Aurélie Hurault Maître de conférences Directrice de thèse
Philippe Quéinnec Professeur des universités Directeur de thèse

École doctorale et spécialité :
MITT : Domaine STIC : Sureté de logiciel et calcul de haute performance

Unité de Recherche :
IRIT

Directeur(s) de Thèse :
Philippe Queinnec et Aurélie Hurault

Rapporteurs :
Bernadette Charron-Bost et Rachid Guerraoui







i

Remerciements

Une thèse comme la mienne, avec une grande marge de manoeuvre pour le doctorant, n’est
pas possible sans une supervision adaptée. Je voudrais donc remercier mes encadrants Aurélie
Hurault et Philippe Queinnec, qui ont accompli la lourde tâche de me canaliser. Je remercie
aussi mes rapporteurs Bernadette Charron-Bost et Rachid Guerraoui pour leurs rapports, et
les échanges sur des points techniques importants, notamment avec Bernadette Charron-Bost.
Enfin, je remercie les membres de mon jury de thèse, Xavier Thirioux, Emmanuelle Anceaume
et Sébastien Tixeuil, d’avoir accepter d’écouter et de juger mes travaux.

Bien sûr, une thèse se fait quelque part. Merci donc aux divers occupants du légendaire
bureau F315 pour leur capacité toujours impressionnante à partir en vrille : Florent, Mathieu,
Guillaume, Jonathan, et les autres. Tout le monde ne peut pas être élu au sain bureau;
malgré tout, quelques braves méritent mes remerciements pour de nombreuses discusssions
plus ou moins sensées : Crabe, Benoit et Ismail, entre autres. Merci aussi à mes collègues
d’ACADIE d’avoir supporté mes questions étranges et mes sujets de recherche bizarres ces
dernières années: Xavier, Yamine, Philippe, Marc, Xavier, Neeraj et les autres.

Je ne suis pas toujours resté dans ce bureau, contrairement à ce que la crise actuelle pourrait
laisser penser. Merci donc à Armando et Karla pour leur accueil chaleureux à Mexico. Merci
aussi à tous ceux qui font ou ont fait de l’Eurékafé ma deuxième (troisième? quatrième?)
maison : Arnold, Sam, Agatha, Clémence, Seb, Maxime, Antoine, Lille, Alexis, et pleins
d’autres encore.

Enfin viennent les remerciements plus personnels. Merci à Jérémy pour avoir écouté mes
plaintes et mes problèmes durant des années. Merci à Matthieu et Anaël pour avoir discuté
encore et encore avec moi de la valeur de ma recherche, et de tout le reste. Merci à Romain
de m’avoir changé les idées et encouragé sans jamais douter. Merci à mes parents de m’avoir
soutenu, malgré l’incertitude de la recherche, pour faire quelque chose d’important à mes yeux.
Merci à Amin, Raf et Skander de me changer les idées avec vos couilloneries. Merci à Flora
d’être là.



ii

À mes parents, pour m’avoir poussé à ne pas me contenter du minimum.
À Flora, pour le célébrer avec moi.



Contents

0 Introduction 1
0.1 A Philosophy of Distributed Computing . . . . . . . . . . . . . . . . . . . . . . 1

0.1.1 Knowledge, Science and Computing . . . . . . . . . . . . . . . . . . . . 1
0.1.2 Distributed Computing: in the Face of Uncertainty . . . . . . . . . . . . 2

0.2 The Monopoly of Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2.1 The Essence of Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.2.2 The Adventures of Rounds . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.2.3 In Search of Distributed Time . . . . . . . . . . . . . . . . . . . . . . . . 6

0.3 Nothing but Rounds: the Heard-Of Model . . . . . . . . . . . . . . . . . . . . . 7
0.3.1 Equivalence with Round-Based Models . . . . . . . . . . . . . . . . . . . 7
0.3.2 Abstracting rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.3.3 A Mathematical Abstraction: the Heard-Of model . . . . . . . . . . . . 8

0.4 The Road Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 The Heard-Of Model: Definitions and Perspectives 11
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Into the Weeds: Definitions and Details . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Defining the Heard-Of Model . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Defining Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Reaching the Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 State of the Art: Distributed Computing Models . . . . . . . . . . . . . . . . . 15
1.3.1 I’ll Do Anything for Synchrony . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Beyond Synchrony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Making Heard-Of predicates 21
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 It’s always asynchrony’s fault . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Delivered Predicates: Rounds Without Timing . . . . . . . . . . . . . . . . . . 25
2.2.1 Removing Timing Information . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Building Delivered Predicates . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Delivered In, Heard-Of Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Executions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Strategies, and How to Build Them . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Extracting Heard-Of Collections of Executions . . . . . . . . . . . . . . 34
2.3.4 Two simple executions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.5 A Complete Example: At Most F Crashes . . . . . . . . . . . . . . . . . 38

2.4 Carpe Diem: Oblivious Strategies Living in the Moment . . . . . . . . . . . . . 41
2.4.1 Definition and Expressiveness Results . . . . . . . . . . . . . . . . . . . 41
2.4.2 Building oblivious strategies . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.3 Computing Heard-Of Predicates . . . . . . . . . . . . . . . . . . . . . . 46



iv CONTENTS

2.4.4 When Oblivious is Enough . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5 No Future: Conservative to the End . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.1 Definition and Expressiveness Results . . . . . . . . . . . . . . . . . . . 51
2.5.2 Building conservative strategies . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.3 Computing Heard-Of predicates of conservative strategies . . . . . . . . 58
2.5.4 When Conservative is Enough . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 The future is now . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.7 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7.2 History of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7.3 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3 Clashing Heard-Of Predicates with Other Models 65
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Models and Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.2 Focus on Strong Completeness . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.3 From HO[HO] to AMP [FD] . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.4 From AMP [FD] to HO[HO] . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Extending to the All-Deciding Case . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.1 Full Monotony: Extending the Final Decisions . . . . . . . . . . . . . . 92
3.4.2 Local Specifications: Agreeing on a Full Decision . . . . . . . . . . . . . 93

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5.2 History of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Leveraging Heard-Of Predicates 97
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.1 Closed-above predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 Oblivious algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.3 K-set agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 One round upper bounds: a start without topology . . . . . . . . . . . . . . . . 101
4.3.1 Simple closed-above predicates: almost too easy . . . . . . . . . . . . . 102
4.3.2 General closed-above predicates: tweaking of upper bounds . . . . . . . 103
4.3.3 Intuitions on upper and lower bounds . . . . . . . . . . . . . . . . . . . 104

4.4 Elements of combinatorial topology . . . . . . . . . . . . . . . . . . . . . . . . . 105



CONTENTS v

4.4.1 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.2 Uninterpreted complexes of closed-above predicates . . . . . . . . . . . . 106
4.4.3 Interpretation of uninterpreted complexes . . . . . . . . . . . . . . . . . 108
4.4.4 A Powerful Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 One round lower bounds: a touch of topology . . . . . . . . . . . . . . . . . . . 112
4.6 Multiple rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.1 Closure-above is not invariant by product, but its still works . . . . . . 117
4.6.2 Upper bounds for multiple rounds . . . . . . . . . . . . . . . . . . . . . 118
4.6.3 Lower bounds for multiple rounds . . . . . . . . . . . . . . . . . . . . . 121

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7.2 History of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 Conclusion 125
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2.1 Further perspective on my work . . . . . . . . . . . . . . . . . . . . . . 126
5.2.2 Other questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Bibliography 129





Chapter 0

Introduction

The only thing that makes life possible
is permanent, intolerable uncertainty;
not knowing what comes next.

The Left Hand of Darkness
Ursula K. Leguin

Sommaire
0.1 A Philosophy of Distributed Computing . . . . . . . . . . . . . . . . . 1

0.1.1 Knowledge, Science and Computing . . . . . . . . . . . . . . . . . . . . . 1
0.1.2 Distributed Computing: in the Face of Uncertainty . . . . . . . . . . . . . 2

0.2 The Monopoly of Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2.1 The Essence of Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.2.2 The Adventures of Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.2.3 In Search of Distributed Time . . . . . . . . . . . . . . . . . . . . . . . . . 6

0.3 Nothing but Rounds: the Heard-Of Model . . . . . . . . . . . . . . . . 7
0.3.1 Equivalence with Round-Based Models . . . . . . . . . . . . . . . . . . . . 7
0.3.2 Abstracting rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.3.3 A Mathematical Abstraction: the Heard-Of model . . . . . . . . . . . . . 8

0.4 The Road Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

0.1 A Philosophy of Distributed Computing

0.1.1 Knowledge, Science and Computing

Distributed computing studies how information and uncertainty in part of a system constrains
and generates information and uncertainty at the level of the whole system. Every algorithm,
bound, impossibility result, and more, rely on each process’ information and uncertainty about
the system – its knowledge.

Even so, should we, researchers in distributed computing, care about such elusive philo-
sophical details? Yes. The giants on which shoulders a field of research stands are not merely
its technical results, but also the underlying intuitions about its objects of study. And none
of these intuitions matters more than the type of knowledge produced by the field and how it
is produced.

Take the natural sciences. Physics, Biology, Chemistry, all have concrete objects of study;
things like lightning, mitosis and oxidation. The goal of these sciences is obvious: explaining



2 CHAPTER 0. INTRODUCTION

these phenomena. To do so, models capture the simplest explanation accounting for all known
facts; experiments test predictions made by those models, and falsify them. Such is the
scientific method pushed by Karl Popper [1], and made into almost a definition of what
Science is. Even accounting for variations, like the importance of synthesis in chemistry [2],
this narrative captures most of the production of knowledge about natural phenomena.

On the other hand, what does Computer Science study? It’s not computers, despite the
name. It might be computation. But what’s that? Computation is not, as far as human
knowledge goes, a physical phenomenon like lightning, mitosis or oxidation. It is instead an
abstraction, a process realized in many different ways, just like a short story can be written in
ink, punched in braille, or spoken. The defining aspect of a computation lies in its mechanistic
nature: a set of exact and non-ambiguous steps to answer a question or solve a problem.
Theses steps might be probabilistic, complex or difficult to interpret (like the computation of
a neural network), but they must still follow one from the other without holes or space for
interpretation.

Computer Science thus studies procedures without need for creative interpretation. In
doing so, it sheds light on what is knowable and doable with formal certainty – or at least
formal guarantees.

But in distributed computing, these procedures interact with each other through the phys-
ical world, imprecise and uncertain. This adds a whole new layer to this analysis, captured
by the many models of distributed computing.

0.1.2 Distributed Computing: in the Face of Uncertainty

Upon glancing at any textbook or proceedings on distributed computing, the abundance of
models catches the eye. If not every paper, then every track at a conference or every chapter
in a textbook likely studies a different model of distributed computation. 1 Sometimes the
differences are subtle and easy to miss; sometimes the models have nothing in common, except
their distributed nature.

Of course, models also abound in sequential computing. But they all end up equivalent to
Turing Machines, or strictly weaker. Since concrete implementations of the strongest models
exist – you might be reading this thesis on one –, the use of weakening is limited to self-
referential issues in formal methods. Thus in sequential computability, a problem is considered
computable if and only it is computable on Turing Machines. End of story. For distributed
computing on the other hand, not all models are equivalent, some are incomparable, and no
model is "better" than the other.

The heart of this difference comes from uncertainty. Sequential computing studies me-
chanic solvability; distributed computing studies mechanic solvability by interacting processes
despite uncertainty. This uncertainty manifests itself in various ways:

• Capabilities of processes: polynomial time, exponential time, computable, more than
computable,. . .

• Atomicity: which groups of events are considered to happen in a single step.

• Communication primitives: messages, shared-memory, one-to-one interactions,. . .
1The proceedings of PODC 2020 contains at least 15 different models!



0.2. THE MONOPOLY OF ROUNDS 3

• Degree of synchrony: how much the local clocks of processes are synchronized with each
other, and the delays on communication.

• Kind and number of faults: issues or perturbations that might plague processes, com-
munication primitive or exchanged information.

• . . .

Because processes must take into account others, and how they might interact with them,
knowledge plays a crucial role in distributed computing. Equivalently, every model of dis-
tributed computing provides a set of axioms about interactions between processes. The
study of distributed computability and complexity simply unravels the consequences of these
axioms for mechanical problem solving. Another way to say this is that the uncertainty needs
to be tamed through assumptions; then it becomes non-determinism, which we can study
formally.

But where do these axioms come from? In the case of sequential computing, there is at
least the "one true notion of computation" as a guideline, thanks to the Church-Turing thesis.
But as I’ve stated above, there is no "best" or "ideal" model of distributed computing. In this
context, how to judge the worth of any such model?

To begin with, the value of these models lies not so much in capturing a concrete situation,
but instead in the extraction of properties relevant to problems of distributed computation, like
synchronization and symmetry-breaking. If a new model changes some long held hypothesis, or
add new variants, and that alters computability and complexity, the model’s in. It should shed
light on what is useful and what is necessary for solving the problems the research community
cares about.

Still, how to know if the property unearthed by a brand-new model occurs in any physical
distributed system? For example, pure asynchrony – unbounded delays of communication –
never occurs in a real system. It causes intricate and interesting behaviors; are they meaning-
ful? Ultimately, as in Mathematics, a distributed model will be judged by the wealth of results
it produces. Even if it makes too many assumptions or not enough to capture precisely a con-
crete system, such a model can clarify the fundamental questions of distributed computing.
Overly strong models are enticing for impossibility results, because their inability to solve a
problem propagates to their many weakenings. On the other hand, overly weak models serve
to find algorithms: one working in this barren context will still work under any strengthening.
In addition, for a solution to exist in a weak model, the latter must capture some necessary
hypotheses for solving this problem.

We should thus recognize some value in the axioms unearthed by decades of research in
distributed computing. These arguments only strengthens the need for many models, and
thus the creation of new issues compared to sequential computing: keeping track of all these
models in their own right, as well as the web of relations between them.

Managing its plethora of models therefore represents one of the fundamental
questions of distributed computing.

0.2 The Monopoly of Rounds

Most of this section comes from Sections 1 and 2 of my paper "The Splendors and Miseries of
Rounds" [3], published in SIGACT News.



4 CHAPTER 0. INTRODUCTION

The issue with having a lot of models stems not so much from their number, but from their
organization: models in distributed computing form more of a menagerie than a taxonomy.
What the field needs is a perspective through which some structure can be brought to this
mess. Rounds offer one such promising approach, by constraining models enough to allow for-
malization. Just as importantly, rounds appear almost everywhere in distributed computing.
So using them, instead of tacking on some ad-hoc concept from elsewhere, reveals underlying
patterns in the field.

In this section, I explore in more details how and why rounds are used in distributed
computing.

0.2.1 The Essence of Rounds

Rounds provide structure – a structure to build algorithms on. This aspect of rounds might be
the most obvious, since numerous distributed algorithm designers leverage this structure, be
it for design or analysis. But what is this structure? Usually, rounds involve sending messages
tagged with the current round number, waiting for some messages with the same number, and
computing the next state while incrementing the round number. Such a description helps to
recognize rounds in the wild, but not in the unambiguous way of a mathematical definition.
Worse, it implies the use of messages, whereas the structure of rounds seems independent of
the means of communication.

Fortunately, Elrad and Francez [4] solved this problem almost 40 years ago. In studying
the decomposition of concurrent composition of CSP programs into layers, they stumbled
into a decomposition into chunks of time that was safe – equivalent to the initial program in
terms of behavior. They called such chunks communication-closed layers: layers such that no
communication ever happens between different layers.

Communication-closedness truly captures the essence of rounds. Operationally, it ensures
that processes at round r don’t use messages from other rounds in their local computation.
Messages from rounds before r will never be used, and are thus thrown away; messages
from rounds after r are buffered until their round. As long as some decomposition into
communication-closed layers exists for an algorithm, the latter uses rounds as an underlying
structure, whether implicitly or explicitly.

In general researchers and algorithm designers don’t need such a formal understanding of
rounds to use them. Yet there is a realm where it proves necessary: formal verification. There,
knowing how communication-closedness works gives a handle into the verification of round-
based distributed algorithms. Indeed, Chaouch-Saad et al. [5] proved that many properties
one wants to check on distributed algorithms, such as the properties defining consensus, can
be verified using communication-closed rounds as if they were synchronous. Such reductions
were leveraged notably by Damien et al. [6] and Gleissenthal et al. [7], to verify asynchronous
fault-tolerant algorithms.

Communication-closedness is also essential to ensure the usual atomicity of round-based
models: the fact that at each process, for each round, the emission of messages for this
round (or any form of outgoing communication like writing in shared-memory), the reception
of messages for this round (or any form of incoming communication like reading in shared-
memory) and the local computation for this round happen as if in one step. This is possible
because the messages received at round r by p cannot depend on the messages p sent at round
r, because if some q receives a message from p at round r, the next messages it will send are



0.2. THE MONOPOLY OF ROUNDS 5

at round r + 1.

0.2.2 The Adventures of Rounds

One common mistake about rounds is assuming synchrony – the property of processes com-
puting at the same speed, with a known upper bound on communication delay. Sure, almost
every synchronous algorithm uses rounds, and synchrony provides a simple way to imple-
ment rounds: broadcast, wait for the upper bound on communication delay to receive all
messages, do some computation, then change round. But communication-closedness is what
really matters for rounds – and both synchrony and asynchrony allow it. It is therefore essen-
tial to disentangle rounds and synchrony, which I do next by exploring both synchronous and
asynchronous uses of rounds.

In practice, synchrony generally costs too much to implement. But in theory, it gives
an excuse for assuming rounds – without justifying how they are implemented. When the
focus of a new model isn’t the rounds themselves, but some other parameter, a synchronous
version provides the simplest possible setting to study the new parameter. For example, many
biological-inspired "message-passing" models assume rounds through synchrony, such as the
beeping model of Cornejo and Kuhn [8], the task-allocation model of Cornejo et al. [9] or the
Cellular Bioelectric model of Gilbert et al. [10]. Other more technological models also depend
on synchrony for rounds, such as radio networks from Chlamtac and Kutten [11] or dynamic
networks from Kuhn et al. [12].

In the asynchronous setting, rounds provide robustness instead. State-machine replication
and failure detectors show that well. The former uses rounds where processes wait for a
majority of messages before deciding – see Paxos from Lamport [13], Zab from Junqueira et
al. [14] or Viewstamped Replication from Oki and Liskov [15]. Concerning failure detectors,
rounds provide a natural way to use the information they give: which process is suspected of
crashing. In most algorithms using failure detectors, like the ones of the original papers by
Chandra and Toueg [16] and Chandra et al. [17], processes wait only for messages from the
unsuspected processes, and then change round.

After seeing its value in both synchronous and asynchronous settings, you might wonder
why this structure is so integral to distributed algorithms. The answer is because it allows
a sequential analysis. As Raynal and Rasjbaum argued in a recent article [18], this reduc-
tion to sequential reasoning remains The Way for understanding concurrent and distributed
computation.

The quintessential example of this is the combinatorial topology approach to distributed
computing [19]. In it, problems and protocols are cast as manipulations of simplicial com-
plexes, high-dimensional combinatorial objects. All possible inputs form a complex, all possible
outputs another, and the problem imposes constraints on maps from the input complex to
the output complex. The solvability of the problem then reduces to the existence of a map
satisfying these constraints. For many standard models, the map from inputs to outputs
splits naturally into communication-closed layers – and thus rounds. Then the existence of
the sought-for map depends only on the properties of one layer, and on how they compose.
This reduction of the combinatorial complexity usually yields a clean and powerful mathe-
matical description, usable for many impossibility results and lower bounds. For example,
wait-free shared-memory can be described as the iterated application of an elegant map called
a barycentric subdivision [20]. This characterization proved integral to the proof of a general



6 CHAPTER 0. INTRODUCTION

computability theorem for this model [20].
One must be careful, though: despite the benefits of thinking about distributed compu-

tation sequentially, not all distributed algorithms use rounds. Many asynchronous algorithms
deliberately focus on point-to-point communication, usually to lower the message count or
the waiting time. Sometimes the model itself ends up unsuited to communication-closed lay-
ers. Population protocols are an example: although rounds are mentioned for complexity
issues, these models study one-to-one communication with minimal memory requirements –
two reasons for not using rounds.

0.2.3 In Search of Distributed Time

Measuring time is another fundamental use of rounds, dating back to the dawn of distributed
computing. Indeed, where sequential models of computation have no problem defining what
a time step is, parallelism and interleavings complicate the story for distributed computing.
What is a time step of a system with a lot of parts computing and communicating at different
times and possibly different speeds?

The round provides an answer to this difficult question: it defines a step of a distributed
algorithm cleanly, and in a way that focuses on the cost of communication. The time taken by
the algorithm is then the number of rounds. This idea goes back at least to the early 80’s, in
a paper by Arjomandi et al. [21], although tracking its first use proves difficult. What’s sure
is that since then, round complexity has become a staple of distributed computing research,
and the subject of most lower bounds in the literature.

The depth of this abstraction of time inspired a full-fledged distributed theory of com-
plexity [22], analogous to the sequential one [23, 24]. This theory focuses on Peleg’s LOCAL
model [25], a standard synchronous model parameterized by a fixed topology. It defines and
studies various complexity classes for distributed decision problems. Central to this study is
the notion of locality: a decision problem is local if and only if some algorithm solves it in
a constant number of rounds, whatever the number of processes. Local algorithms represent
truly tractable solutions, in terms of scalability – the number of rounds stays the same when
the number of processes increases. In that sense, the class of local decision problems plays an
analogous role to the class P of tractable sequential decisions problems.

Following the analogy, many fascinating ideas from computational complexity translate to
the distributed setting: verification of certificates [22, 26, 27], derandomization [28], hardness
of approximation [29]... All these thanks to the underlying rounds providing a robust notion
of time.

That being said, like any measure, round complexity is but a tool, not always useful or
even meaningful. In asynchronous models for example, the "real" time taken by each round
can vary wildly – eroding the relation between rounds and time. The repeated broadcasts
inherent in rounds also put them at odds with other measures of performance focused on the
communication cost, like message complexity. Nevertheless, the wealth of results generated
by rounds as a complexity measure vindicates once more their place as a fundamental idea of
distributed computing.



0.3. NOTHING BUT ROUNDS: THE HEARD-OF MODEL 7

0.3 Nothing but Rounds: the Heard-Of Model

Most of this section comes from Section 3 of my paper "The Splendors and Miseries of
Rounds" [3], published in SIGACT News.

As we saw, rounds crop up all around in the design and analysis of distributed algorithms.
There is but a small step in concluding from this exploration that they could make a useful
abstraction of distributed computing models.

As a matter of fact they do.

0.3.1 Equivalence with Round-Based Models

Most message-passing models consider faults at the level of components such as processes
and links; Santoro and Widmayer [30] were the first to propose a model where only the
consequences of faults are described. That is, the model only captures whether a message
is received or not, and not why. Combined with the assumptions of rounds and synchrony,
this gives a simple yet powerful round-based model parameterized by how many and which
message losses are allowed at each round.

This model capture surprisingly well some classical asynchronous models. The first evi-
dence came from Raynal and Roy [31], in a short note proving the equivalence of the asyn-
chronous model with at most F permanent crashes, with the round-based model above where
at each round, for each process, at most F messages sent to this process are lost. Such an
equivalence follows from a simulation from one model to the other, and back. This entails
that given an algorithm in one model, there is a systematic way to build an algorithm for the
same problem in the other model; their computability is the same.

Afek and Gafni [32] then pushed further this line of inquiry. They generalized the previous
model by defining "message adversaries", predicates constraining which messages can be lost
at which round. With an adversary limited to remove a message from at most one direction
for each communication link, they showed the equivalence with the wait-free single-reader
multiple-writer shared-memory model. Then Raynal and Stainer [33] doubled down, by ex-
tending this approach for models using failure detectors, both in message-passing and shared-
memory. They provided an adversary equivalent to wait-free shared-memory augmented with
Ω, as well as one for asynchronous message-passing augmented with (Σ,Ω). Moreover, these
results outlined the relations between various message-adversaries.

Therefore, many fundamental models in distributed computing reduce to round-based
ones, at least for questions of computability. Yet I find an issue with the message adversary
model: the assumption of synchrony. As I argued above, synchrony is not inherent in rounds
– communication-closedness is. Moreover, the simulations don’t use the additional power of
synchrony over rounds: the knowledge that if a message is not received at its round, it will
never be received. Thus synchrony serves only as a crutch to justify the use of rounds.

Fortunately, there are promising formalisms keeping all the power of message adversaries
while abstracting away such implementation details.

0.3.2 Abstracting rounds

An approach to round-based models without synchrony is the Round-by-Round Fault De-
tector model (or RRFD) of Gafni [34]. Executions in this model proceed through rounds



8 CHAPTER 0. INTRODUCTION

implemented by waiting for the messages of processes in a set given by an oracle, the RRFD.
Different constraints on communication are then captured by predicates on the output se-
quences of RRFDs. Among others, Gafni found predicates for asynchronous message-passing
with crashes, wait-free shared-memory and partially synchronous message-passing. This ap-
proach was also extended in the GIRAF model of Keidar and Shraer [35], which allows more
predicates, and even some non-communication-closed rounds.

But these two abstractions suffer from the same issue than the message adversaries: they
are too operational. They describe how rounds are implemented, not just how they unfold.
Moreover, the use of fault detectors implicitly accuse some components for the failure. And
such accusation forces the model to rely on actual crashes and failing links, going back to
square one – many incomparable parameters. Last but not least, RRFDs don’t ensure the
correctness of their ouput, making processes wait forever in some cases. This behavior makes
sense in the study of indulgent algorithms [36], where the point is to deal with untrustworthy
oracles; but for general models of computation, stronger guarantees are required.

0.3.3 A Mathematical Abstraction: the Heard-Of model

Taking the best of message adversaries and RRFDs results in only considering which messages
are received at each round. This yields the Heard-Of model of Charron-Bost and Schiper [37],
which captures models as predicates on the messages actually received on time.

The building blocks of the Heard-Of model are the heard-of collections and the heard-of
predicates. Since the latter are merely predicates on the former (or equivalently, sets of them),
we can focus on the heard-of collections. A heard-of collection returns, for every process p and
round r, the set of processes heard at round r by p.2 From the viewpoint of an algorithm in
the Heard-Of model, these processes are the senders of the messages given to p at round r for
its local computation. From the viewpoint of a system-level implementation of the Heard-Of
model, these processes are the senders of messages received before giving to the algorithm at
p its set of messages for round r – before p went to round r + 1, basically.

This deserves emphasis: a heard-of collection captures the messages that were received on
time. In this context, on time means "before the end of the round it was sent in".

Fundamentally, the Heard-Of model is about the logical information available to processes
during the rounds. It focuses on the flow of information within rounds, instead of on what
happens to messages exactly. Hence the knowledge given is not of which messages will be
delivered, but of which messages will be usable for local computation.

This entail an important aspect of the Heard-Of model: its atomicity. The succession of
broadcast, receptions and local computation at round r for process p forms a single step – from
the viewpoint of other processes, it is either over or has not happened yet. Such atomicity can
be rephrased by saying that there is no distinct event that is causally between two of the three
events of p at round r. This in turns follows from the fact that processes broadcast before
receiving their messages, and the received message are from round r. So the receptions on p at
round r cannot be causally linked with the broadcast of p at round r, because the receptions
at another process q happen after q’s own broadcast for r.

2A heard-of collection can also be seen as an infinite sequence of directed graphs over Π, where the r-th
graph captures communication at round r. Then q being an incoming neighbor of p in the r-th graph means
that p received the message of q at round r.



0.3. NOTHING BUT ROUNDS: THE HEARD-OF MODEL 9

This atomicity is to be contrastred with the common atomicity in asynchronous message-
passing models (like in Fischer, Lynch and Paterson [38])), where it’s the succession of recep-
tions, local computation and emissions that forms an atomic step. I explore the differences in
the next chapter.

The main promise of the Heard-Of model lies in capturing multiple assumptions about
communication – the axioms – in a formal mathematical framework. It considers synchrony
and faults together; both are abstracted by which messages are received on time.

To see how this work, consider crashes in synchronous and asynchronous message-passing.
If p doesn’t receive a message from q at round r, what can it deduce about the state of q? In
the synchronous case, that q crashed, and thus that no message from it will be received for
future rounds, whether on time or not. In the asynchronous case on the other hand, maybe
the message was just late – p cannot infer that it will never receive a message from q in the
future. Notice how synchrony and asynchrony are used to predict the pattern of messages.
The Heard-Of model cuts the middle man, and uses the patterns of messages from the start.

The benefits of this approach over the menagerie of classical models are numerous:

• (Model comparison) Predicates in the Heard-Of model come with their formal com-
parison relation: translation. One predicate HO1 translates into another HO2 if for
each collection of HO1, there is a way to compose successive rounds (and maybe throw
away some messages) to get a collection of HO2. Basically, HO2 is simulated on top of
HO1 by taking multiple rounds of HO1 to gather enough messages and then choosing
the ones to keep according to HO2. It has yet to be studied in depth, even if the original
paper [37] gives some translations, as do a couple of papers about specific problems, such
as the study of approximate consensus by Charron-Bost et al. [39]. Schmid et al. [40]
also studied the limits of this comparison relation.

• (Computability and complexity results) A model’s worth lies in the quality of
the results proven in it. On this front, the Heard-Of model is already quite successful,
both for computability (finding new algorithms for classic problems, on predicates never
studied before) and for complexity (bounding below the number of rounds necessary to
solve a problem on a predicate). The most notable results include new algorithms for
consensus in the original paper by Charron-Bost and Schiper [37]; characterizations of
the heard-of predicates on which consensus is solvable by Coulouma et al. [41] and Nowak
et al. [42]; a syntactic characterization of the algorithms solving consensus for a subset
of heard-of predicates by Balasubramanian and Walukiewicz [43]; a characterization of
the heard-of predicates on which approximate consensus is solvable by Charron-Bost et
al. [39]; and a study of k-set agreement by Biely et al. [44].

• (Formal verification) I mentioned previously that rounds, or more specifically
communication-closedness, help with formal verification. It should thus be no surprise
that the elegant mathematical abstraction of the Heard-Of model also works well with
formal verification. Among others, there are: a proof-assistant based (Isabelle/HOL)
verification of consensus algorithms in Charron-Bost et al. [45]; cutoff bounds for the
model checking of consensus algorithms by Marić et al. [46]; the mentioned above syntac-
tic characterization of algorithms solving consensus for a subset of heard-of predicates by
Balasubramanian and Walukiewicz [43]; and a DSL to write code following the structure
of the heard-of model and verify it with inductive invariants by Drăgoi et al. [47].



10 CHAPTER 0. INTRODUCTION

0.4 The Road Ahead

Despite the advantages of the Heard-Of model, it is not as widely used in the distributed
computing literature as one could imagine. Which raises the question: what is missing?
What we have is a clean mathematical model, that captures many interesting parameters of
the uncertainty of distributed computation, and is amenable to formal verification. On the
other hand, the Heard-Of model as it stands lacks at least three things: a mean to extract
the predicate from a classical model, a comparison with classical models in terms of what is
computable, and general techniques for proving computability and complexity results.

Let’s start with the extraction of a predicate. An elegant model is great, but at the
end of the day, a useful model is one that captures the object of study. Traditional models of
distributed computing emerged from this tension; they arose through trial and error, back and
forth between usable models and models describing the actual problems. But when confronted
with the Heard-Of model, this hard-won legitimacy of the classical models vanishes. And
no mean exists yet for knowing which predicate corresponds to what. Of course, there are
examples and correspondence in the original paper [37]; but these are given, not proved. Even
if I accept these examples, what about the ones not mentioned? How should I go about
translating any given model into a heard-of predicate?

Next, even when knowing how to translate some model into a heard-of predicate, is some-
thing lost in translation? Does the heard-of predicate captures exactly the computability of the
original model, or strictly less? The usual suspects in this line of reasoning are communication-
closedness and the absence of failures. Intuitively, it seems harder to solve problems while
unable to use late messages, and while forcing every process, even the silent ones, to decide.
But no paper proved that a given model has no equivalent heard-of predicate; and even the
literature on these equivalences is slim.

Finally, let’s say that I have a model, its corresponding heard-of predicate, and both are as
powerful in terms of computability. Then how do I prove lower bounds, impossibility results,
properties of my algorithms? The other face of a clean mathematical model is an increased
complexity of the reasoning. In addition, the Heard-Of model differs enough from previous
models that the techniques established for the latter don’t translate trivially to the former.

Addressing these three problems forms the core of my thesis. After a chapter defining
formally the Heard-Of model and presenting its relation with the literature, the next three
chapters each address one problem, instantiated to a more concrete form:

• (Derivation) Given a classical model of distributed computing, what is the "closest"
heard-of predicate? This is answered in Chapter 2 for asynchronous models, by studying
strategies that constrain when to change round.

• (Expressivity) Is there an equivalence between classical models and heard-of predi-
cates? This question is addressed in Chapter 3, by showing the equivalence of failure
detectors in the Chandra-Toueg hierarchy with specific heard-of predicates.

• (Computability) Given a heard-of predicate, what can be derived in terms of com-
putability and complexity results? This is studied in Chapter 4, through impossibility
results for k-set agreement.



Chapter 1

The Heard-Of Model: Definitions
and Perspectives

All models are wrong, some
are useful

George Box

Sommaire
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Into the Weeds: Definitions and Details . . . . . . . . . . . . . . . . . . 11

1.2.1 Defining the Heard-Of Model . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Defining Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Reaching the Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 State of the Art: Distributed Computing Models . . . . . . . . . . . . 15
1.3.1 I’ll Do Anything for Synchrony . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Beyond Synchrony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1 Introduction

After setting the stage and outlining the results to come, let’s introduce in full force the main
character: the Heard-Of model. This chapter gets into the details of this model, and presents
its place among the rest of distributed computing models.

1.2 Into the Weeds: Definitions and Details

1.2.1 Defining the Heard-Of Model

To start, we will only use the Heard-Of model in the context of a fixed set of processes Π
and a complete topology. Although this is not in the original definition, many predicates and
results do assume such hypotheses. See Section 1.2.3 for a discussion of some alternatives.

As mentioned in the introduction, the Heard-Of model constrains communication through
heard-of predicates, which are themselves predicates on heard-of collections. These predicates
play the role of assumptions about synchrony, faults, network topology, and more.



12 CHAPTER 1. THE HEARD-OF MODEL: DEFINITIONS AND PERSPECTIVES

Usually, heard-of collections are represented as functions from a round r and a process p
to a set of processes – the processes from which p heard the message sent at round r before
or during its own round r.

Definition 1.1 (Heard-Of Collections and Predicates). Let Π a set of processes. Then an
element h of (N∗×Π) 7→ P(Π) is a heard-of collection. The outputs of a heard-of collection
are the heard-of sets of this collection.

In the same way, an element of P((N∗×Π) 7→ P(Π)) is a heard-of predicate HO for Π.

From another perspective, heard-of collections are infinite sequences of communication
graphs – directed graphs which capture who hears from whom on time, in that q ∈ h(r, p) ⇐⇒
(q, p) is an edge of the r-th communication graph.

Definition 1.2 (Collection as a sequence of directed graphs). Let GraphsΠ be the set of
directed graphs whose nodes are the elements of Π. Then gr ∈ (GraphsΠ)ω is a heard-of
collection.

A function h and a sequence gr represent the same collection when ∀r > 0,∀p ∈ Π :
h(r, p) = Ingr[r](p), where In(p) is the set of incoming neighbors of p.

In general, which perspective to use in a theorem or a proof follows naturally from the
context. For example h[r] only makes sense for a sequence of directed graphs, while h(r, p)
only makes sense for a function.

Although we won’t be talking about algorithms in the Heard-Of model until Chapter 3, it
is important to note that in this thesis, we assume that all algorithms in the Heard-Of model
broadcast at each round. Then the heard-of collection used in some execution of such an
algorithm really captures which messages are received on time. Another perspective would be
to say that processes might send a message only to some processes, and thus that the heard-of
collection captures the messages that would be received on time, assuming they are sent. This
is an interesting approach, but for simplicity, in this thesis we priviledge the first one.

Now, remember that the Heard-Of model ensures communication-closedness. Thus in an
algorithm, processes at a given round only interact with processes at the same round – they
only consider messages from this round. To do so, the system-level implementation of the
Heard-Of model has processes buffer messages received in advance, and discard ones received
late. Say q, during its round r, sends a message to p. What happens at p splits into four
possibilities (some of them only possible assuming asynchrony):

• p receives the message while it is at a round < r; it buffers it for the moment. Then it
might be used during round r of p, and q ∈ h(r, p).

• p receives the message while it is at round r; it might use it for its local computation
during this round, and q ∈ h(r, p).

• p receives the message while it is at a round > r; it discards the message, and q /∈ h(r, p).

• p never receives the message; it has nothing to do, and q /∈ h(r, p).

The fundamental intuition is that heard-of collections and predicates capture the logical
information available at the end of a round. From this comes both their simplicity and their
complex relations with classical models.



1.2. INTO THE WEEDS: DEFINITIONS AND DETAILS 13

1.2.2 Defining Predicates

The original paper by Charron-Bost and Schiper [37] gives properties of collections useful in
defining heard-of predicates.

The kernel of a round contains the processes heard by everyone at that round – that is,
the processes that successfully broadcasted. As for the kernel of an execution, it contains
processes that broadcast at every round. Then the cokernels are simply the complements of
the corresponding kernels.

Definition 1.3 (Kernels and Cokernels of a heard-of collecton). Let ho be a heard-of collection
and let r > 0. Then the kernel of ho at r, Kho(r) ,

⋂
p∈Π

ho(r, p). The kernel of ho, Kho ,⋂
r>0

Kho(r).

Also, the cokernel of ho at r, CoKho(r) , Π \Kho(r). And the cokernel of ho, CoKho ,
Π \Kho.

Let’s now turn to the main heard-of predicates used in papers and in the next chapters.
Table 1.1 lists their mathematical definition, while the following list unwraps them.

• HOsp_unif captures the space-uniformity property: at every round, processes either
broadcasts or are not heard by anyone. Equivalently, every heard-of set at round r equals
the kernel at this round. This predicate thus ensures a strong synchronization within
each round.

• HOreg captures the regularity property: at every round, the heard of sets are contained
in the kernel of the previous round. If someone did not hear from p at round r, then
no one will ever hear from it at rounds > r. This is a defining property of classical
synchronous models.

• HOnosplit captures the no-split property: at every round, every heard-of set intersects
non trivially with every other. Such a property plays the role of quorums in asynchronous
models.

• HOnekrounds captures the non-empty kernel rounds property: as the name suggests,
at every round, the kernel contains at least one process. So each round has at least one
source (when considered as a communication graph). Note that the source might change
between rounds.

• HOnek captures the non-empty kernel property: the kernel of the whole collection
contains at least one process. That is, a permanent source exists for each collection.

• HOKF captures the kernel lower bound property: the kernel of the whole collection
contains at least n − F processes. These processes act like correct processes in a syn-
chronous setting: they don’t crash and their messages are received on time.

• HOF captures the heard-of set lower bound property: all heard-of set contains at
least n−F processes. So processes act like correct processes in an asynchronous setting
with at most F crashes: they can always wait for n − F processes, but not always for
more.



14 CHAPTER 1. THE HEARD-OF MODEL: DEFINITIONS AND PERSPECTIVES

Name Definition
HOsp_unif {h a heard-of collection | ∀r > 0, ∀p, q ∈ Π : h(r, p) = h(r, q)}
HOreg {h a heard-of collection | ∀r > 0, ∀p ∈ Π : h(r + 1, p) ⊆ Kho(r)}
HOnosplit {h a heard-of collection | ∀r > 0, ∀p, q ∈ Π : h(r, p) ∩ h(r, q) 6= ∅}
HOnekrounds {h a heard-of collection | ∀r > 0 : Kho(r) 6= ∅}
HOnek {h a heard-of collection | Kho 6= ∅}
HOKF {h a heard-of collection | |coKho| ≤ n− F}
HOF {h a heard-of collection | ∀r > 0, ∀p ∈ Π : |ho(r, p)| ≥ n− F}
HOcountL {h a heard-of collection | ∑

r>0,p∈Π
|Π \ ho(r, p)| ≤ L}

HOcountroundsL {h a heard-of collection | ∀r > 0, ∑
p∈Π
|Π \ ho(r, p)| ≤ L}

Table 1.1: A list of heard-of predicates.

• HOcountL captures the count property: at most L messages in the entire execution might
not arrive on time. This bounds the number of message loss, a form of constrained
unreliable communication.

• HOcountroundsL captures the count by round property: at most L messages per round
might not arrive on time. Here the bound concerns each round, as if fixing the risk of
message loss for specific periods of time.

1.2.3 Reaching the Limits

This thesis defends the Heard-Of model as a powerful lens for studying distributed computing.
Nonetheless, like every model, it has limitations. I list the most important here to give an
intuition of where the model can and can’t be applied.

• (Fixed number of processes) Almost all heard-of predicates studied rely on the
number of processes. This entails that for these predicates, enforcing dynamicity requires
changes.
An approach would be for Π to contain all processes that will eventually join, and make
them silent until they join and after they leave. But such an approach would require a
change in the known predicates – to deal with the join and removal of processes. For
example, HOF explicitly uses the (assumed fixed) number of processes to constrain the
size of the heard-of sets. Another example comes from kernels: a process arriving in
the middle of an execution that is heard by everyone after might be good enough for
some predicates based around kernels; but this process wouldn’t be in the kernel of the
collection. Another alternative would be to define what was the heard-of collection for
processes joining at round r.

• (Assumed orthogonality of communication capability and algorithm) In the
Heard-Of model, whether processes can communicate at a round is assumed independent
of the algorithm being used. This separates the heard-of collection (the communication
behavior) and the algorithm. Such orthogonality comes from the fact that the Heard-Of
model studies fault tolerance. On the other hand, as we will see in the state of the



1.3. STATE OF THE ART: DISTRIBUTED COMPUTING MODELS 15

art below, some models break this independence. Models with interference are a prime
example: two neighboring processes communicating at the same time cancel or alter
their messages.
This assumption is so baked into the Heard-Of model that I don’t see how to remove it
while retaining the interesting results.

• (No randomness) As of now, the Heard-Of was never used for studying randomized
algorithms, despite their importance in the field. The definition of a Heard-Of algorithm
uses deterministic send and transition functions, but there is no issue in principle with
replacing them by relations for non-determinism or probability distributions for ran-
domness. That being said, the behavior of probabilistic algorithms running on infinite
sequences of directed graphs with complex properties might prove more difficult to study
than on the usual setting – where the topology is fixed or the properties are simpler.

• (One shot tasks) Finally, pretty much all known algorithms for the Heard-Of model
solve one-shot tasks: problems like consensus that needs to be solved only once. But
many distributed problems are not one-shot: implementation of shared objects, repeated
consensus, or any problem used as a building block to solve another problem.
A big difficulty here is that algorithms in the Heard-Of model assume that all processes
start at round 1. To ensure this in the context of repeated tasks, termination of the
previous task needs to be detected globally – a really difficult problem. A recent approach
to this question comes from Damian et al. [48], which use synchronized Heard-Of rounds
and calls to subprotocols to capture non-recursive distributed computations.

1.3 State of the Art: Distributed Computing Models

Since we want to use the Heard-Of model instead of other classical models of distributed com-
puting, it makes sense to explore and describe the latter before moving on with the technical
results.

1.3.1 I’ll Do Anything for Synchrony

As mentioned above, synchrony eases the computation of a corresponding heard-of predicate
by giving a single meaningful way to implement rounds: waiting for the communication upper-
bound before changing rounds. Indeed, this is so obvious that most synchronous models in the
literature never describe the implementation of rounds – they merely assume their existence.
This also entails that all synchronous models ensure the same atomicity than the Heard-Of
model: at each process and at each round, the broadcast, receptions and local computation
happens as in one step.

Since the results in this thesis focus on the more difficult asynchronous case, this section
offers an opportunity: detailing, for many synchronous models, the kind of heard-of predicates
generated by the standard implementation of rounds in synchronous models, and whether
seeing them through the Heard-Of model makes any sense at all.

LOCAL model The most popular synchronous model of distributed computing in recent
times is assuredly the LOCAL model [25]: a synchronous model with a fixed topology, no



16 CHAPTER 1. THE HEARD-OF MODEL: DEFINITIONS AND PERSPECTIVES

faults, and reliable communication. Notice that every graph problem ends up computable in
this model, as long as the underlying graph is connected: every process eventually receives
the input of everyone else, and thus computes a solution locally.

Researchers using this model thus focus on complexity issues. Given a family of graphs
of increasing size (the cycles of length n or the grid graphs with n2 elements for example),
they study the round complexity of solutions in function of the size of the graph. Just like
in sequential complexity, what matters is the most efficient algorithms for the problem, not
just any algorithm. For example, what problems are solvable by looking only at a constant
size neighborhood of the node? These are the so-called local problems, whose solutions scales
perfectly when the size of the graph increases. As an example, computing a maximal matching
(a maximal set of edges which do not intersect) in a bicolored-graph (a graph with a 2-coloring
of its vertices) is a local problem [49].

Returning to our original question, the Heard-Of model captures the LOCAL model in
a very simple way: the predicate contains a single collection, where at each round the com-
munication graph is the network topology in the LOCAL model. The Heard-Of model thus
completely supersedes the LOCAL model in terms of expressivity. It makes sense, as the
Heard-Of attempts to capture all meaningful models of distributed computing, whereas the
LOCAL model functions as a crisp and simplified setting for studying distributed complexity
theory.

CONGEST model The CONGEST model [25] is the version of the LOCAL model with
bandwidth constraints: messages take at most O(log(n)) bits.

This changes entails two consequences: not all problems can be solved in O(n) rounds,
contrary to the LOCAL model (because forwarding the inputs might require messages of
more than logarithmic size in the number of node); and local algorithms in the CONGEST
model are in some sense even more scalable than ones in the LOCAL. This is because a local
algorithm can in theory send messages of a size O(n), making it scalable only in terms of
rounds, not message size.

Also in contrast with the LOCAL model, no heard-of predicates ensures the constraints
on message size. It can be added on top of the model, but that is an ad-hoc change instead
of a parameter tweak. This incompatibility between the two models probably stems from
the orthogonal concerns behind their invention: studying distributed complexity with low-
bandwidth for the CONGEST model, and studying distributed computability and (round)
complexity in round-based models for the Heard-Of model.

Radio networks One aspect of distributed communication absent from the models above
is interference. This stems from a focus on wired networks, where protocols for dealing with
interference hide the issue. But for wireless communication, one must take into account these
interference when designing algorithms.

A popular example of such a wireless model is the radio network model of Chlamtac and
Kutter [11]: nodes lie on a fixed graph, either send a message or listen at each round, and
receive a message if and only if they listened and only one of their neighbors sends a message.
Here interference manifests itself in the most straightforward way – by cancelling out messages
sent to the same process at the same round.

In this context, our hypothesis that algorithms in the Heard-Of model always broadcast is
an issue: it will cause interferences all the time. But even when switching to an interpretation



1.3. STATE OF THE ART: DISTRIBUTED COMPUTING MODELS 17

of heard-of predicates which capture which message could be received if they were sent, no
heard-of predicates exists for these radio network models. This is because heard-of predicates
capture the capability to communicate, which are assumed independent of the behavior of
processes. A heard-of collection captures which process could hear which other at each round;
it doesn’t capture that p will hear q if and only if q sends a message, and no other process
does.

Nonetheless, we could use a graph of actually received messages in place of the communi-
cation graphs of the Heard-Of model, and capture interference that way. This would define
predicates parameterized by the algorithm used. Although it seems possible, this goes beyond
the Heard-Of model, and thus the scope of this thesis.

Dynamic networks The common point of the LOCAL and CONGEST models is their
fixed topology. Dynamic networks aim to study what happens if this topology changes instead.
The first paper presenting this model is by Kuhn et al. [50]. The model basically assumes
synchronous rounds, with the connectivity between processes possibly changing at each round.
Hence the model is parameterized by the possible sequence of communication graphs – that
is to say by a heard-of predicate.

Therefore the Heard-Of model is really appropriate for capturing this kind of models.
Even better, a heard-of predicate comes with less operational assumptions, and thus subsumes
dynamic networks models.

That being said, since the Heard-Of model requires a fixed number of processes and syn-
chronous starts, among other things, any variant of dynamic networks without these hypothe-
ses might prove difficult to capture through a heard-of predicate.

Biological models Among models of biological distributed computing, many assume syn-
chronous rounds. As a representative example, I’ll focus on the beeping model [8]. It’s a model
with very minimal communication, possibly capturing computation between simple processes
like cells.

The beeping model, first defined by Cornejo and Kuhn [8], consists of processes in a
fixed network with synchronous rounds. What sets this model apart is that processes do not
send messages; instead they beep. At each round, each process decides between beeping and
listening for beeps. When some process listens, it only hears whether one of its incoming
neighbors beeped. Depending on the variant of the model (see Casteigts et al. [51] for a
survey), processes might also hear interferences (two neighbors beeping at the same time)
while listening, while beeping, or never.

Is the Heard-Of model adequate for capturing such a model? The first problem comes
from the nature of communication: the Heard-Of model considers messages, not beeps. One
could argue that beeps are just a form of message, but they actually provide even less in-
formation than binary messages, and the "only one beep is heard even if multiple neighbors
beep" property cannot be represented through messages alone. Nonetheless, it is probably
straightforward to extend the Heard-Of model for this form of communication. On the other
hand, a possibly insurmountable problem is the non orthogonality of communication capabil-
ity with the algorithm. Interferences entail that whether or not a process can communicate
with another process depends on who else tries to communicate in the neighborhood. This is
the same sort of problem as for the radio network models.



18 CHAPTER 1. THE HEARD-OF MODEL: DEFINITIONS AND PERSPECTIVES

1.3.2 Beyond Synchrony

Classical asynchronous models Maybe the most classical model of distributed computing
is the asynchronous message-passing model with reliable communication and crashes. It’s on
this model that the most famous impossibility result of the field, the impossibility of consensus
with one possible crash, was proven by Fischer et al. [38].

As mentioned in the previous chapter, this model (called FLP in the rest of this section)
ensures another form of atomicity than the Heard-Of model: the atomicity at each process of
receptions, local computation and emissions. The atomicity of FLP can be used to guarantee
the atomicity of the Heard-Of model, by implementing communication-closed rounds. On the
other hand, the atomicity of the Heard-Of model (and other round-based models) is not enough
to guarantee the atomicity of FLP, because of communication-closedness. That being said,
there is still a way to simulate the execution of algorithms in FLP-like models (for example
the failure detector model) in the Heard-Of model with the right predicates. See Raynal and
Stainer [33] and the chapter 3 of this thesis.

FLP can be captured by the Heard-Of model with the predicate HOF in Table 1.1, where
F is the maximum number of crashes. This characterization was done multiple time in the
literature, notably in Charron-Bost and Schiper’s original paper [37] and in a note by Raynal
and Roy [31].

Another staple of asynchronous models is asynchronous shared memory. Instead of sending
messages, processes in these models communicate by writing and reading shared objects, like
Single-Writer-Multiple-Reader registers (which work as the name implies), or atomic snap-
shot (allowing atomic reading and writing an array of multiple registers). And although
many intuitions about the Heard-Of model leverage messages, the shared-memory models can
be captured by round-based models equivalent to the Heard-Of. These are the RRFDs of
Gafni [34] and the message adversary model of Afek and Gafni [32] (although in this paper it
is simply called "synchronous message passing with message delivery failures").

Failure detectors Although the asynchronous models mentioned above are indeed classical,
they suffer from the impossibility results for many problems, such as consensus. One way to
get around these comes from failure detectors. Failure detectors, as coined by Chandra and
Toueg [16], are oracles providing for each process of the system, a local oracle that gives a set
of suspected processes when called. The correlation between suspicion and the actual behavior
of processes (like crashing) depends on the different properties of failure detectors: for example
the perfect failure detector ensures that every process eventually detects every crash, and that
no uncrashed process is ever suspected. Depending on these properties, using failure detectors
allows one to solve consensus in asynchronous systems. Most of the uses of failure detectors
are on top of a FLP-like model where at most n − 1 processes might crash, with a complete
topology and reliable communication.

Failure detectors might appear incompatible with the Heard-Of model; yet exactly the
opposite holds. One, if not the main, use of failure detectors is to implement rounds in
asynchronous systems. It is then the properties of those rounds that allow or not the solving
of problems like consensus.

This is the subject of Chapter 3 in this thesis. The results and characterizations there rely
heavily on the work by Raynal and Stainer [33] on proving equivalences between asynchronous
models augmented with failure detectors and synchronous models with message adversaries.



1.4. CONCLUSION 19

Partial Synchrony So-called partially synchronous models are really the FLP model with
additional synchrony assumptions. They come from efforts to solve consensus on asynchronous
systems. Instead of saying that no bounds on communication or processes speed exist (full
asynchrony), partially synchronous models have additional assumptions about how periods of
synchrony alternates with periods of asynchrony. Algorithms on this model aim at ensuring
safety all the time, and advancing liveness when long enough periods of synchrony occur.
Two of the biggest approaches to fault-tolerance, Paxos by Lamport [13] and Viewstamped
Replication by Oki and Liskov [15], implicitly use such a model, ensuring correctness even
with pure asynchrony, and liveness when synchrony is good enough.

The first instance of partially synchronous models probably comes from Dwork et al. [52].
They study additional synchrony assumptions on FLP, on the relative speed of processes
and/or on communication delay. They define two kinds of additional synchrony assumptions:
one with known upper bounds that hold only after some unknown time T ; and another with
unknown upper bounds that hold from the beginning.

Because such models lie between fully synchronous message-passing (which can be readily
abstracted by a heard-of predicate capturing exactly the delivered messages) and fully asyn-
chronous message-passing (which I show in the next chapter can be meaningfully captured
by a heard-of predicate), partially synchronous models should be captured by the Heard-Of
model too. Hutle and Schiper [53] take the first step in this direction, by studying the round
properties that can be implemented on a weakened version of one of Dwork et al. [52] partially
synchronous models: known upper bounds, which hold only for some unknown interval of
time.

Nonetheless, a systematic approach to abstract partially synchronous models through the
Heard-Of model is still missing for now.

1.4 Conclusion

The Heard-Of model provides a clean and powerful abstraction of distributed computing. It
abstracts away many of the fundamental models of distributed computation. That being
said, it still has limitations. These in turn explain why some models, notably the ones with
interference, seem incompatible with the Heard-Of model, even if they use rounds.





Chapter 2

Making Heard-Of predicates

How did it get so late so soon?

Attributed to Dr. Seuss

Sommaire
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 It’s always asynchrony’s fault . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Delivered Predicates: Rounds Without Timing . . . . . . . . . . . . . 25
2.2.1 Removing Timing Information . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Building Delivered Predicates . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Delivered In, Heard-Of Out . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Executions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Strategies, and How to Build Them . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Extracting Heard-Of Collections of Executions . . . . . . . . . . . . . . . 34
2.3.4 Two simple executions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.5 A Complete Example: At Most F Crashes . . . . . . . . . . . . . . . . . . 38

2.4 Carpe Diem: Oblivious Strategies Living in the Moment . . . . . . . 41
2.4.1 Definition and Expressiveness Results . . . . . . . . . . . . . . . . . . . . 41
2.4.2 Building oblivious strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.3 Computing Heard-Of Predicates . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.4 When Oblivious is Enough . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 No Future: Conservative to the End . . . . . . . . . . . . . . . . . . . . 51
2.5.1 Definition and Expressiveness Results . . . . . . . . . . . . . . . . . . . . 51
2.5.2 Building conservative strategies . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.3 Computing Heard-Of predicates of conservative strategies . . . . . . . . . 58
2.5.4 When Conservative is Enough . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.6 The future is now . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.7 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7.2 History of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7.3 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



22 CHAPTER 2. MAKING HEARD-OF PREDICATES

2.1 Introduction

There are two levels at which we can consider the Heard-Of model: at the level of an algorithm,
which only sees the messages for the current round, and at the system level, where the rounds
are implemented concretely. This chapter focuses on the second level: no algorithm to solve
a distributed problem like consensus or MIS will be considered. Instead, it explores how to
implement rounds in ways that guarantee a certain heard-of predicate on a given operational
model.

I thus define and explore an approach for formalizing the implementation of a heard-of
predicate on top of an informal model of distributed computation. More specifically, I focus
on asynchronous message-passing models, as implementing heard-of predicates on top of these
models is more involved.

2.1.1 It’s always asynchrony’s fault

Finding the heard-of predicate corresponding to a given distributed computing model is dif-
ficult. Obviously, part of the problem comes with starting from a mishmash of English and
Mathematics (the operational model) to build a formal predicate (the heard-of predicate). But
the main issue is that the problem might not be well-defined: it’s not clear what the "heard-of
predicate corresponding to a distributed computing model" even means.

Let’s start investigating with the easy mode: synchrony. By this I mean the traditional
synchronous message-passing model, with synchronized local clocks, every computation step
taking the same time, and upper bounds on communication delays. We’ll start by assuming
no crash. With such a model, rounds can only be defined in one meaningful way: broadcast,
wait for the upper bound on communication delay to receive all the messages that will ever
be received from this round, then change round. Thanks to this upper bound, every process
eventually changes round. Implementing rounds in this way gives rise to a heard-of predicate,
as each execution corresponds to the heard-of collection defined by the messages received
before the end of the round. This gives rise to the heard-of predicate corresponding to the
synchronous model. It always exists; what’s left is to characterize it.

If we add crashes to the mix, there is the additional issue of defining the heard-of sets
for crashed processes after they crash. We use the assumption, common in the literature
on the Heard-Of model, that crashed processes still receive the messages from non-crashed
processes. Obviously, if they’re crashed, they cannot receive messages. But replacing them
by silent processes that still wait for the upper bounds and receive all messages simplifies the
predicates. It also doesn’t change the part that the correct processes can observe – they never
receive another message from a crashed process.1 If we do that, then even with crashes, the
way to implement rounds discussed above gives rise to a single heard-of predicate.

On the other hand, this neat story breaks down when switching to hard mode: asynchrony.
In an asynchronous model, there is no upper bound on communication, by definition. This
means that there is no clear-cut non trivial2 rule for when to end rounds in general. Let’s
emphasize this point: no rule for deciding when to change round works for all asynchronous

1Another way to interpret this is that from the point of view of a correct process, there is no difference
between a crashed process and a silent one. And thus we’re free to choose the representation that is most
helpful. Choosing the silent process allow us to define clean heard-of predicates, and thus is the choice taken.

2The rule that always allows the change of round will never block, but it also guarantees nothing in terms
of heard-of predicate.



2.1. INTRODUCTION 23

models. In this context, a rule that works is a rule that ensures progress of rounds – no process
ever blocks forever at some round.

The absence of such a rule has dire consequences for the well-definiteness of the question:
each rule that works for a given asynchronous model will implement its own heard-of predicate.
Which one should be used to abstract the original model in the Heard-Of model? Is there
always such a predicate? And how to compute it?

This chapter addresses these questions.

2.1.2 Overview

My approach to characterize asynchronous models in terms of heard-of predicates relies on
the following intuition: what matters is the most constrainted predicate, among the set of
predicates that can be implemented on top of the original model.

To express what constraint means in the context of the Heard-Of model, let’s turn to
a common mathematical duality – that of predicates and sets. Every predicate has a dual
representation as a set: the set of all elements satisfying this predicate. So a heard-of predicate
can be thought as the set of heard-of collections satisfying it; it constrains which heard-of
collection is possible in an execution of the Heard-Of model. Then if there were less collections
in it, it would be more constrained, because there would be even less choice of heard-of
collection. Hence the most constrained heard-of predicate of a set of heard-of predicates is
the one that is included in all the other predicates of the set – if it exists. Another perpective
is that it’s the minimal element by inclusion of the set of heard-of predicates that can be
implemented on top of the original model.

In distributed computing, we usually say that a model is "strong" if it constrains heav-
ily what can happen, and "weak" if it constrains lightly what can happen. Then the more
constrained heard-of predicate of a set, if it exists, is the strongest in this sense.

I formalize this by introducing an intermediary step: delivered predicates, predicates on
delivered collections. The latter capture the messages that are delivered from each round r,
without considering the round of delivery. This is to contrast with heard-of collections, that
only capture messages tagged by r if delivered at the receiver when the local round counter is
≤ r. Because the round of delivery is not considered, computing the delivered predicate for a
model does not require a rule for when to change round. Intuitively, the delivered predicate
of a model is the heard-of predicate of the same model if it was synchronous (and thus every
delivery happened on time). Going to delivered predicate before heard-of predicate allows the
formal introduction of rounds without caring about asynchrony and the difficulties it entails.

Notice that a delivered predicate can be trivially implemented on top of the original model
by maintaining a local round number, and then in repetition broadcasting a message tagged
with it, and change round (with the receptions arriving at any point). So a delivered predicate
is really the original model recast in terms of rounds, without guarantees about which message
will be received on time and thus usable for each round. That is what going to heard-of
predicates buys us.

Figure 2.1 shows this separation of the derivation in two steps. We start with the opera-
tional model, derive its delivered predicate, and then find the "strongest" heard-of predicate
(the smallest when viewed as a set, the most constrained) that can be implemented by a
rule (called a strategy) for this specific delivered predicate. Such a strongest predicate fully
characterizes an asynchronous message-passing model in terms of the Heard-Of model.



24 CHAPTER 2. MAKING HEARD-OF PREDICATES

Operational
Model

Delivered
Predicate

Heard-Of
Predicate

Rounds Asynchrony

Figure 2.1: From classical model to heard-of predicate

That being said, a formalization is not enough by itself; there needs to be some way to
compute such a characterizing predicate, and proving it is indeed the strongest. This problem
becomes tractable by introducing two new ideas: families of strategies, and operations on
predicates and strategies.

Recall that strategies are the rules that tell when processes can change rounds. Then
families of strategies are sets of strategies that only depend on some limited part of the local
state of a process. Because they are more limited, they’re easier to study, and the heard-of
predicates that they generate have specific forms.

For the second point, it’s often easier to build complex delivered predicates and strategies
by combining together simple ones. The operations defined in this chapter allow this, in
a way that maintains important properties of the strategies. In some cases, the heard-of
predicate characterizing the resulting delivered predicate can be found by combining the heard-
of predicates characterizing the building blocks, using the same operations.

The results of this chapter are the following:

• The definition of delivered predicates and strategies, as well as operations on both, in
Section 2.2.

• The formalization of the derivation of heard-of predicates from a delivered predicate
and a strategy, in Section 2.3. This comes with a complete example: the asynchronous
message-passing model with reliable communication and at most F permanent crashes.

• The study of oblivious strategies, the strategies only looking at messages for the current
round, in Section 2.4. I provide a technique to extract a strategy dominating the oblivious
strategies of the complex predicate from the strategies of its building blocks; exact
computations of the generated heard-of predicates; and a sufficient condition on the
building blocks for the result of operations to be dominated by an oblivious strategy.

• The study of conservative strategies, the strategies looking at all messages from previous
and current round, as well as the round number3, in Section 2.5. I provide a technique
to extract a strategy dominating the conservative strategies of the complex predicate
from the strategies of its building blocks; upper bounds on the generated heard-of pred-
icates; and a sufficient condition on the building blocks for the result of operations to be
dominated by a conservative strategy.

• A preliminary exploration of strategies using messages from "future" rounds, and an
extended example where these strategies build stronger heard-of predicates that conser-
vative and oblivious strategies. This is done is Section 2.6.

3They thus can’t depend on messages from "future" rounds: messages tagged with a round greater than the
round counter of the receiver



2.2. DELIVERED PREDICATES: ROUNDS WITHOUT TIMING 25

Finally, note that this chapter is a combination of two published papers coauthored with
my advisors: "Characterizing Asynchronous Message-Passing Models Through Rounds" [54]
published in OPODIS 2018, and "Derivation of Heard-Of Predicates From Elementary Behav-
ioral Patterns" [55] published in FORTE 2020.

2.2 Delivered Predicates: Rounds Without Timing

In this chapter, the main information we’re interested in is which messages are received, and at
which round for the receiver. This means that the executions considered are not full executions
of an algorithm where the content of messages matters – the important part are the emissions,
deliveries, and changes of rounds.

2.2.1 Removing Timing Information

What makes the synchronous case easier boils down to the equivalence between the messages
that are delivered at all, and those that are delivered on time. This cannot be replicated in the
asynchronous case, as each asynchronous model requires a different rule for which messages
to wait for before changing round. This also entails that it might be impossible to wait for all
the messages that will be delivered and not block forever.

For example, in an asynchronous model with at most F crashes, it’s safe to wait for n−F
messages before changing round, as at least n − F processes will never crash. But in the
asynchronous model with at most F + 1 crashes, doing so will get processes blocked in some
cases.

On the other hand, even for such asynchronous models, we can study the predicate defined
by the messages eventually delivered. Let’s call this a delivered predicate, and it has
the same formal definition as Definition 3.6 of heard-of collections and predicates – only the
interpretation changes.

Definition 2.1 (Delivered Collections and Predicates). Let Π a set of processes. Then an
element c of (N∗×Π) 7→ P(Π) is a delivered collection. The outputs of a delivered collection
are the delivered sets of this collection.

An element of P((N∗ ×Π) 7→ P(Π)) is a delivered predicate DEL for Π.

For examining the difference, recall that we’re considering the Heard-Of model at a system
level: we’re implementing it. Then let’s take an execution of some implementation (which
needs to satisfy some constraints, defined later): a linear order of emissions, receptions and
changes of rounds (a step where the local round counter is incremented) for each process. Then
if each process changes round infinitely often, there’s a delivered collection d and a heard-of
collection h corresponding to this execution – just look at which messages sent to p tagged with
round r where received at all by p (for d) and which were received when the round counter at
p was ≤ r (for h). That is, for a round r > 0 and processes p, q ∈ Π, q ∈ d(r, p) means that p
received at some point the message of q annotated by r. On the other hand, q ∈ h(r, p) means
that p received (while it’s round counter was ≤ r) the message of q annotated by r. Hence
the heard-of collection extracted from this execution captures which messages were waited for
(and thus could be used at the algorithm level – but that’s not treated here), whereas the
delivered collection extracted from this execution captures which messages were received at
all.



26 CHAPTER 2. MAKING HEARD-OF PREDICATES

To find the delivered predicate corresponding to an asynchronous model, the intuition is to
take its synchronous version, and then take the heard-of predicate that would be implemented
by the rule for changing rounds in synchronous models. This is the delivered predicate for the
model. This captures the strongest heard-of predicate that could be implemented on top of
this asynchronous model, if processes could wait for all messages that will be delivered.

In general, they can’t, since it requires knowing exactly what’s happening over the whole
distributed system. Nonetheless, the delivered predicate exists, and it plays the role of an
ideal to strive for. The characterizing heard-of predicate of a model will be the closest over-
approximation of the delivered predicate that can actually be implemented.

Now, let’s look at some examples of delivered predicates. Starting with a classic, the
asynchronous model with reliable communication, and at most F crash failures (where crashes
can happen at any point).

Definition 2.2 (DELcrashF ). The delivered predicate DELcrashF for the asynchronous model
with reliable communication and at most F permanent crashes ,{
c a delivered collection

∣∣∣∣∣ ∀r > 0, ∀p ∈ Π : |c(r, p)| ≥ n− F
∧ c(r + 1, p) ⊆ Kc(r)

}
.

Why is this the delivered predicate for this model? Well, Charron-Bost and Schiper [37,
Table 1] define it as the heard-of predicate of the synchronous version of this model. To prove
it, we would need a formal definition of the delivered predicate for a given model. And this is
hard because operational models are rarely formal to begin with, and when they are formal,
it is often in incompatible ways.

Thus the best we can do right now is to give an informal argument for why, if you take
the asynchronous model with reliable communication and at most F permanent crashes, and
implement communication-closed rounds in any way that ensures an infinite number of rounds
for every process, the messages received will form a delivered collection of DELcrashF . In the
other direction, every collection of DELcrashF captures the message received in an execution of
the implementation of rounds on top of the aforementioned asynchronous model.4

• Let t be an execution of an implementation of communication-closed rounds on top of
the asynchronous model above, with the condition of ensuring an infinite number of
rounds.
Again, we consider that a crashed process will still receive all messages after it crashes.
Since crashed processes never do anything else, it’s not incoherent with what actually
happens.
This entails, in addition to reliable communication, that what determine if a message
is received by a crashed process is the fact that it was sent by a non-crashed process.
Since every process that has not crashed broadcasts, this entails that every process
will eventually hear the message from every non-crashed process at this round. And
since there’s at most F crashes, that’s at least n − F messages per round. Hence
|c(r, j)| ≥ n− F .
Also, if p hears from q at round r + 1, then q sent the message before crashing. This
means q did not crash at its own round r, and thus that the message it broadcasted at
that round was sent, and will eventually be delivered. Hence c(r + 1, j) ⊆ Kc(r).

4This assumes that crashed processes are modelled as silent processes, as explained before in this chapter.



2.2. DELIVERED PREDICATES: ROUNDS WITHOUT TIMING 27

• Let c be a collection such that ∀r > 0,∀p ∈ Π : |c(r, p)| ≥ n − F ∧ c(r + 1, p) ⊆ Kc(r).
This collection corresponds to the execution where the crashed process are the ones that
stop broadcasting, because communication is reliable, so if q /∈ c(r, p), this means that
q never sent its message to p tagged with r. From the model this means that it crashed
during its broadcast at round r. Each crash thus happens at the first round where the
crashed process is not heard by everyone, after sending the messages that are actually
received at this round.

Later in this chapter, the heard-of predicate characterizing this delivered predicate (the
most constrained one) is derived. But it’s interesting to mention it here, as a comparison.
This is HOF (defined as {h a heard-of collection | ∀r > 0,∀p ∈ Π : |ho(r, p)| ≥ n − F} in
Table 1.1). The difference lies in the kernel condition: DELcrashF ensures that if any message
sent by p at round r is not eventually delivered, then no message will be delivered from p at
rounds > r. Intuitively, p not broadcasting means that it crashed in the middle of sending
messages at round r, and thus that it will never send messages for the next rounds. But this
is not maintained by HOF . Why? Because the n − F messages that are waited for are not
necessarily the same at each process. So q might wait for a message from p at round r, but
k might receive at least n − F messages at round r without the one from p. And because of
this, k cannot conclude that p crashed, because the message might just be late.

Here is another delivered predicate, this time for the asynchronous model without crashes,
but with at most L messages lost in the whole execution (of the system level implementation
of rounds).

Definition 2.3 (DELlossL ). The delivered predicate DELlossL for the asynchronous model with-
out crashes, and with at most L message losses ,{
c a delivered collection

∣∣∣∣∣ ∑
r>0,p∈Π

(n− |c(r, p)|) ≤ L
}
.

This one is not from Charron-Bost and Schiper [37], but we can apply the same reasoning
than for the previous delivered predicate. Here the sum counts the number of messages that
are never delivered. Since all the processes are correct, this corresponds to the number of lost
messages.

For L = 1, the best known strategy (to our knowledge) implements HOcountrounds1 (See
Table 1.1). What is lost in implementing a heard-of predicate on top of this delivered predicate
is that instead of losing only one message over the whole execution, there might be one loss
per round. This is explained in Section 2.6.

2.2.2 Building Delivered Predicates

Due to the difficulty of defining the delivered predicate for a given model, it might be hard
to derive it. The more complex the model, the more complex the derivation of its delivered
predicate. On the other hand, simple models are relatively easy to characterize by a delivered
predicate.

This motivates the following proposal to solve the red part of Figure 2.2: building complex
delivered predicates from simpler ones. That way, there will be no need to derive by hand the
delivered predicates of complex models.



28 CHAPTER 2. MAKING HEARD-OF PREDICATES

Operational
Model

Delivered
Predicate

Heard-Of
Predicate

Rounds
(Operations) Asynchrony

Figure 2.2: From classical models to delivered predicates

For example, consider a system where one process might crash and may or may not recover
later on5. In some sense, this behavior is defined by having the delivered collections for
one possible crash that never recover, and the delivered collections for one possible crash
that must recover. This amounts to a union (or a disjunction); I write it DELcanrecover1 ,
DELcrash1 ∪DELrecover1 .

The first predicate of this union is DELcrash1 , the delivered predicate for at most one crash
that never recovers. But what about the second one, DELrecover1 ? Intuitively, a process that
can crash but must recover afterward is described by the behavior of DELcrash1 which is shifted
to the behavior of DELtotal (the predicate where all the messages are delivered) after some time.
I call this the succession of these predicates, and write it DELrecover1 , DELcrash1  DELtotal.

Finally, imagine adding another crash that cannot recover to the previous predicate. Thus
a behavior where there might be one crashed process as constrained by DELcrash1 and another
crashed process as constrained by DELcanrecover1 . I call it the combination (or conjunction) of
these predicates, and write it DELcrash1

⊗DELcanrecover1 .
The complete system is thus described by DELcrash1

⊗((DELcrash1  DELtotal)∪DELcrash1 ).
In the following, I also introduce an operator ω to express repetition. For example, a

system where, repeatedly, a process can crash and recover is (DELcrash1  DELtotal)ω.
Let’s now define formally these operations.

Definition 2.4 (Operations on predicates). Let P1, P2 be two delivered or heard-of predicates.

• The union of P1 and P2 is P1 ∪ P2.

• The combination P1
⊗
P2 , {c1

⊗
c2 | c1 ∈ P1, c2 ∈ P2 }, where for c1 and c2 two

collections, ∀r > 0,∀p ∈ Π : (c1
⊗
c2)(r, p) = c1(r, p) ∩ c2(r, p).

• The succession P1  P2 ,
⋃

c1∈P1,c2∈P2

c1  c2,

with c1  c2 , {c | ∃r ≥ 0 : c = c1[1, r].c2} (c1[1, 0] is the empty sequence).

• The repetition of P1, (P1)ω , {c | ∃(ci)i∈N∗ ,∃(ri)i∈N∗ : r1 = 0∧∀i ∈ N∗ : (ci ∈ P1∧ri <
ri+1 ∧ c[ri + 1, ri+1] = ci[1, ri+1 − ri])}.

The intuition behind these operations is the following:

• The union of two delivered predicates is equivalent to an OR on the two communication
behaviors. For example, the union of the delivered predicate for one crash at round r

and of the one for one crash at round r+1 gives a predicate where there is either a crash
at round r or a crash at round r + 1.

5If it does, we can assume that its memory is intact and no messages received in the meantime are lost, but
that’s not important for the system level implementation



2.3. DELIVERED IN, HEARD-OF OUT 29

• The combination of two behaviors takes every pair of collections, one from each predicate,
and computes the intersection of the graphs at each round. Meaning, it adds the loss of
messages from both, to get both behaviors at once. For example, combining DELcrash1
with itself gives DELcrash2 , the predicate with at most two crashes.

• For succession, the system starts with one behavior, then switch to another. The defini-
tion is such that if r = 0, then no prefix of c1 is used (the first behavior never happens),
but the second one must always happen.

• Repetition is the next logical step after succession: instead of following one behavior
with another, the same behavior is repeated again and again. For example, taking the
repetition of at most one crash results in a potential infinite number of crash-and-restart,
with the constraint of having at most one crashed process at any time.

The usefulness of these observations comes from allowing the construction of interesting
predicates from few basic ones. Let’s take a simple family of basic blocks: DELcrash1,r , the
delivered predicate of the model with at most one crash, at round r.

Definition 2.5 (At most 1 crash at round r). DELcrash1,r ,c a delivered collection

∣∣∣∣∣∣∣∣∣∃Σ ⊆ Π :

|Σ| ≥ n− 1

∧ ∀j ∈ Π

 ∀r′ ∈ [1, r[: c(r′, j) = Π
∧ c(r, j) ⊇ Σ
∧ ∀r′ > r : c(r′, j) = Σ


.

In these predicates, before round r, every process receives every message. And at round r
a crash might happen, which means that processes only receive messages from a subset Σ of Π
of size |Π| − 1 from round r+ 1 onwards. The subtlety at round r is that the crashed process
(the only one in Π \Σ) might crash while sending messages, and thus might send messages to
some processes and not others.

Another fundamental predicate is the total one: the predicate containing a single collection
ctotal, the one where every process receives every message at every round.

Definition 2.6 (Total delivered predicate). DELtotal , {ctotal}, where ctotal is the collection
defined by ∀r > 0,∀p ∈ Π : c(r, p) = Π.

Using these building blocks, many interesting and important delivered predicates can be
built, as shown in Table 2.1. For example, let’s take DELcrash1 , the predicate with at most one
crash. If a crash happens, it happens at one specific round r. DELcrash1 is thus a disjunction
for all values of r of the predicate with at most one crash at round r; that is, the union of
DELcrash1,r for all r.

2.3 Delivered In, Heard-Of Out

After defining delivered predicates and discussing how to find and/or build them, the next
step is to study the heard-of predicates that can be implemented over a given delivered one.
This is the red part of Figure 2.3, which works between two mathematical abstraction, and so
is more formal.



30 CHAPTER 2. MAKING HEARD-OF PREDICATES

Description Expression
At most 1 crash DELcrash1 =

∞⋃
i=1

DELcrash1,i

At most F crashes DELcrashF =
F⊗
j=1

DELcrash1

At most 1 crash, which will restart DELrecover1 = DELcrash1  DELtotal

At most F crashes, which will restart DELrecoverF =
F⊗
j=1

DELrecover1

At most 1 crash, which can restart DELcanrecover1 = DELrecover1 ∪DELcrash1

At most F crashes, which can restart DELcanrecoverF =
F⊗
j=1

DELcanrecover1

No bound on crashes and restart,
with only 1 crash at a time DELrecovery1 = (DELcrash1 )ω

No bound on crashes and restart,
with max F crashes at a time DELrecoveryF =

F⊗
j=1

DELrecovery1

At most 1 crash, after round r DELcrash1,≥r =
∞⋃
i=r

DELcrash1,i

At most F crashes, after round r DELcrashF,≥r =
∞⋃
i=r

DELcrashF,i

At most F crashes with no more than
one per round DELcrash6=F = ⋃

i1 6=i2 6=... 6=iF

F⊗
j=1

DELcrash1,ij

Table 2.1: A list of delivered predicate built using our operations

Operational
Model

Delivered
Predicate

Heard-Of
Predicate

Rounds
(Operations)

Asynchrony
(Strategies)

Figure 2.3: From delivered predicates to heard-of predicates

2.3.1 Executions

Executions of an algorithm are the bread-and-butter of the theory of distributed computing:
they describe the behavior of systems formally enough to be analysed. Here, as we study
the system-level implementation of the Heard-Of model, the executions we consider are not
executions of an algorithm solving a distributed computing problem, but the executions of the
implementation of a specific heard-of predicate. Hence these executions only track emissions,
receptions and changes of rounds. Because the content of each message is not important, and
we care about which messages will be received on time, the emissions are implicit: as long as
a process changed round r − 1 times, it sent its messages for round r (which messages will
depend on the delivered collection used, as explained in a few paragraphs). As for the local
state of each process during this implementation, it contains a local round counter and the set
of received messages.

The last thing that is missing here is the implementation algorithm: the rule that specifies
when to change rounds. This is what I call a strategy, and will be defined shortly. For now, let’s
define executions as formal objects (sequences of events) that satisfy some basic constraints



2.3. DELIVERED IN, HEARD-OF OUT 31

on the ordering of events. We then constrains them by requiring the delivery of exactly the
messages from some delivered collection. The introduction of strategies constrains them some
more, so that the executions allowed are the executions of an implementation of rounds using
this strategy.

To summarize, executions are infinite sequences of events, either delivery of messages
(deliver(r, p, q), which represents the delivery at q of the message from p tagged with r),
change to the next round for some process j (nextj), or a deadlock (stop). An execution must
satisfy three rules: no message is delivered before it is sent, no message is delivered twice, and
once there is a stop, the rest of the sequence can only be stop.

Definition 2.7 (Execution). Let Π be a set of n processes. Let the set of transitions T =
{nextj | j ∈ Π} ∪ {deliver(r, k, j) | r ∈ N∗ ∧ k, j ∈ Π} ∪ {stop}. Then, t ∈ Tω is an execution
,

• (Delivery after sending)
∀i ∈ N : t[i] = deliver(r, k, j) =⇒ card({l ∈ [0, i[| t[l] = nextk}) ≥ r − 1

• (Unique delivery)
∀〈r, k, j〉 ∈ (N∗ ×Π×Π) : card({i ∈ N | t[i] = deliver(r, k, j)}) ≤ 1

• (Once stopped, forever stopped)
∀i ∈ N : t[i] = stop =⇒ ∀j ≥ i : t[j] = stop

Then we can start constraining executions by saying that they must be executions of a
given delivered collection c. What does that mean? That if p changes round at least r−1 times
in the execution, then it sends all messages tagged with r to processes q satisfying p ∈ c(r, q),
and these messages are delivered in the execution. Moreover, every delivery must be of such
a message. For the executions of a delivered predicate, those are exactly the executions of the
collections of the predicate.

Definition 2.8 (Execution of a delivered collection (and of a predicate)). Let c be a delivered
collection. Then, execs(c), the executions of c ,t an execution

∣∣∣∣∣∣∣∣∣
∀〈r, k, j〉 ∈ N∗ ×Π×Π :

(k ∈ c(r, j) ∧ card({i ∈ N | t[i] = nextk}) ≥ r − 1)
⇐⇒

(∃i ∈ N : t[i] = deliver(r, k, j))


For DEL a delivered predicate, we write execs(DEL) = ⋃

c∈DEL
execs(c).

Definition 2.7 above casts behavior in term of changes to the system – the deliveries and
changes of round. A dual perspective interprets behavior as the sequence of successive states
of the system. In a distributed system, such states are the product of local states.

The local state of a process is the pair of its current round and all the received messages
up to this point. Notably, such a local state doesn’t contain the identity of the process.
This is both because we never need this identity, and because not dealing with it allow an
easier comparison of local states, since two distinct processes can have the same local state.
A message is represented by a pair 〈round, sender〉 (instead of triplet like in deliver events,
because the receiver is implicit – it’s the process whose local state we’re looking at). For a
state q, q(r) is the set of peers from which the process (with state q) has received a message
tagged with round r.



32 CHAPTER 2. MAKING HEARD-OF PREDICATES

Definition 2.9 (Local State). Let Q = N∗ × P(N∗ ×Π). Then q ∈ Q is a local state.
For q = 〈r,mes〉, we write q.round for r, q.mes for mes and ∀r′ > 0 : q(r) , {k ∈ Π |

〈r′, k〉 ∈ q.mes}.
Let t be an execution, p ∈ Π and i ∈ N. Then the local state of p in t after the prefix of t

of size i is qtp[i] , 〈|{l < i | t[l] = nextp}|+ 1, {〈r, k〉 | ∃l < i : t[l] = deliver(r, k, p)}〉)

Notice that such executions do not allow process to "jump" from say round 5 to round 9
without passing by the rounds in-between. Indeed, the Heard-Of model doesn’t let processes
decide when to change rounds: processes specify only which messages to send depending on
the state, and what is the next state depending on the current state and the received messages.
So it makes sense for a system-level implementation of heard-of predicates to do the same.

2.3.2 Strategies, and How to Build Them

Executions represent the link between delivered predicates and heard-of predicates: an ex-
ecution of a delivered collection where all processes change round infinitely often defines a
heard-of collection. This is done by looking, for each round r and process p, at the set of
processes such that p received their message tagged by r when the round counter at p was
≤ r.

But we cannot just take all executions of a delivered predicate execs(DEL), and take the
heard-of predicate defined by the heard-of collection for each execution. This is because not all
of these executions ensure an infinite number of rounds for each process. As an example, for a
delivered collection c, the execution where all messages from round 1 are delivered according
to c (whatever the order) and then only stop transitions happen forever is an execution of c.
Yet it blocks all processes at round 1 forever.

Strategies6 solve the problem: they constrain executions, and for a strategy with the right
property, the resulting executions always contain an infinite number of rounds for each process.
A strategy is a set of states from which a process is allowed to change round. It can also be
seen as a boolean function from the local states to {true, false}. It captures rules like "wait
for at least F messages from the current round", or "wait for these specific messages".

Definition 2.10 (Strategy). f ⊆ Q is a strategy.

Strategies as defined above are predicates on states7. This makes them incredibly expres-
sive; on the other hand, this expressivity creates difficulty in reasoning about them. To address
this problem, we define families of strategies. Intuitively, strategies in a same family depend
on a specific part of the state – for example the messages of the current round. Equality of
these parts of the state defines an equivalence relation; the strategies of a family are strategies
such that if a state q is in the strategy, then all states in the equivalence class of q are in the
strategy.

Definition 2.11 (Families of strategies). Let ≈: Q × Q → bool. The family of strategies
defined by ≈, family(≈) , {f a strategy | ∀q1, q2 ∈ Π : q1 ≈ q2 =⇒ (q1 ∈ f ⇐⇒ q2 ∈ f)}

6The name comes from a previous iteration of this research, where the formalization was based on games.
In the present context, a strategy is merely a rule to say when changing round is allowed, depending on the
local state of the process.

7One limiting case is for the strategy to be empty – the predicate being just F alse. This strategy is clearly
useless, and will be weeded out by the constraint of validity from Definition 2.13.



2.3. DELIVERED IN, HEARD-OF OUT 33

With strategies in the picture, we can constrain executions some more: the executions of a
strategy on a delivered predicate are the executions of the implementation of rounds using the
strategy, implementation on the operational model corresponding to the delivered predicate.

Thus let’s next define the executions of a strategy. The intuition is simple: every change
of rounds (an event nextk for k a process) happens only if the local state of the process is in
the strategy; and there is a fairness assumption that ensures that if the local state of some
process k is continuously often in the strategy, then it will eventually change round (have a
nextk event) 8.

A subtlety hidden in this obvious intuition is that the "check" for changing round (whether
the local state is in the strategy) doesn’t necessarily happen at each reception; it can happen
at any point. This captures an asynchronous assumption where processes do not decide when
they are executed.

Definition 2.12 (Executions of a Strategy). Let f be a strategy and t an execution. Then t
is an execution of f , t satisfies:

• (All nexts allowed) ∀i ∈ N,∀p ∈ Π : (t[i] = nextp =⇒ qtp[i] ∈ f)

• (Fairness) ∀p ∈ Π : card({i ∈ N | t[i] = nextp}) < ∞ =⇒ card({i ∈ N | qtp[i] /∈
f}) =∞

For a delivered predicate DEL, we note execsf (DEL) , {t | t an execution of f ∧ t ∈
execs(DEL)}.

The first property is obvious: processes only change round (the next transition) when their
local state is in the strategy. Fairness requires more explanations: it ensures that the only
way for a process p to be blocked at a round r is for p’s local state to not be in f an infinite
number of times. So if the local state of p is eventually always in f , the local state is outside
of f only a finite number of times, and the execution must contain another nextp.

Going back to strategies, not all of them are equally valuable. In general, strategies with
executions where processes are blocked forever at some round are less useful (to implement
infinite sequences of rounds) than strategies without such executions. The validity of a strategy
captures the absence of such an infinite wait.

Definition 2.13 (Validity). An execution t is valid , ∀p ∈ Π, ∀N > 0,∃i ≥ N : t[i] = nextp.
Let DEL a delivered predicate and f a strategy. Then f is a valid strategy for DEL

, ∀t ∈ execsf (DEL) : t is a valid execution.

Finally, analogously to how we can build complex predicates through operations, we can
also build complex strategies through similar operations:

Definition 2.14 (Operations on strategies). Let f1, f2 be two strategies.

• Their union f1 ∪ f2.

• Their combination f1
⊗
f2 , {q1

⊗
q2 | q1 ∈ f1∧q2 ∈ f2∧q1.round = q2.round}, where

for q1 and q2 at the same round r, q1
⊗
q2 , 〈r, {〈r′, k〉 | r′ > 0 ∧ k ∈ q1(r′) ∩ q2(r′)}〉

8This is a weak fairness assumption, which requires a constant availability of the transition after some
point to ensure it will happen. This is to be contrasted with a strong fairness assumption, which requires the
availability infinitely often after some point to ensure that the transition will happen.



34 CHAPTER 2. MAKING HEARD-OF PREDICATES

• Their succession f1  f2 , f1 ∪ f2 ∪ {q1  q2 | q1 ∈ f1 ∧ q2 ∈ f2} where q1  q2 ,

〈q1.round+ q2.round, {〈r, k〉 | r > 0 ∧
(
k ∈ q1(r) if r ≤ q1.round

k ∈ q2(r − q1.round) if r > q1.round

)
}〉

• The repetition of f1, fω1 , {q1  q2  ... qk | k ≥ 1 ∧ q1, q2, ..., qk ∈ f1}.

The intuition behind these operations is analogous to the ones for predicates:

• The union of two strategies is equivalent to an OR of the two conditions. For example,
the union of waiting for at least n−F messages and waiting for all messages but the ones
from p1 gives a strategy that accepts change of round when more than n− F messages
are received or when all messages except the one from p1 are received.

• The combination of two strategies takes all intersections of local states in the first strat-
egy and local states in the second. For example, combining the strategy that waits at
least n−1 messages for the current round with itself will wait for at least n−2 messages.

• For succession, the states accepted are those where messages up to some round cor-
respond to an accepted state of the first strategy, and messages from this round up
correspond to an accepted state of the second strategy.

• Repetition is the next logical step after succession: instead of following one strategy with
another, the same strategy is repeated again and again.

2.3.3 Extracting Heard-Of Collections of Executions

If an execution is valid, then all processes go through an infinite number of rounds. That is,
it captures the execution of a system-level implementation of rounds where no process blocks
forever at some round. It thus makes sense to speak of the heard-of collection implemented
by this execution: at the end of round r for process p, the messages from round r that were
received by p define the heard-of set for r and p.

Definition 2.15 (Heard-Of Collections Generated by Executions and Heard-Of Predicate
Generated by Strategies). Let t be a valid execution. Then the heard-of collection gener-
ated by t, ht ,

∀r ∈ N∗,∀p ∈ Π : ht(r, p) =

k ∈ Π

∣∣∣∣∣∣∣ ∃i ∈ N :

 qtp[i].round = r

∧ t[i] = nextp
∧ 〈r, k〉 ∈ qtp[i].mes




Let DEL be a delivered predicate, and f be a valid strategy for DEL. Then the heard-of
predicate generated by f on DEL , HOf (DEL) , {ht | t ∈ execsf (DEL)}.

Every valid strategy thus generates a heard-of predicate from the delivered predicate.
The way to go from a delivered predicate to a heard-of one is to design a valid strategy

for the former that generates the latter. But that still does not answer the original ques-
tion: among all the heard-of predicates one can generate from a given delivered predicate,
which one should be considered as the characterization of the delivered predicate (and of the
corresponding operational model)?

A heard-of predicate generated from a delivered one is an over-approximation of the latter.
But to be able to solve as much problems as possible, as many messages as possible should



2.3. DELIVERED IN, HEARD-OF OUT 35

be received on time. The characterizing heard-of predicate is thus the smallest such over-
approximation of the delivered predicate, if it exists.

Let’s formalize this intuition by defining a partial order on valid strategies for a delivered
predicate, capturing the implication of the generated heard-of predicates (the inclusion when
considered as sets). One strategy dominates another if the heard-of collections it generates
are also generated by the other. Dominating strategies are then the greatest elements for this
order. By definition of domination, all dominating strategies generate the same dominating
heard-of predicate, which characterizes the delivered predicate.

Definition 2.16 (Domination Order, Dominating Strategy and Dominating Predicate). Let
DEL be a delivered predicate and let f and f ′ be two valid strategies for DEL. Then, f dom-
inates f ′ for DEL, written f ′ ≺DEL f , HOf ′(DEL) ⊇ HOf (DEL).

A greatest element for ≺DEL, if it exists, is called a dominating strategy for DEL. Given
such a strategy f , the dominating predicate for DEL is then HOf (DEL).

2.3.4 Two simple executions

In the following sections, we prove properties about dominating strategies, their invariance
by the operations, and the heard-of predicate that they generate. These proofs rely on rea-
soning by contradiction: assume the theorem or lemma is false, and derive a contradiction.
These contradictions take the form of proving that a valid strategy has an invalid execution;
constructing specific executions is therefore the main technique in these proofs.

This section thus introduces two patterns for constructing executions: one from a delivered
collection and a strategy, the other from a heard-of collection.

To do so, let’s fix ord as some function taking a set and returning an ordered sequence of
its elements – the specific ordering doesn’t matter. This will be used to ensure the uniqueness
of the executions, but the order has no impact on the results.

The standard execution extracts an execution from a delivered collection. It follows a loop
around a simple pattern: deliver all the messages that were sent according to the delivered
collection, then change round for all the processes which are allowed to do so by f .

About notation, ∏
i∈N∗

xi is the infinite concatenation x1.x2.x3....

Definition 2.17 (Standard Execution of Strategy on Execution). Let c be a delivered collec-
tion, and f be a strategy.

The standard execution of f on c is st(f, c) , ∏
r∈N∗

delsr.changesr, where

• dels1 , ord({deliver(1, p, q) | p ∈ c(1, q)}), the ordered sequence of deliveries for mes-
sages from round 1 that will be delivered eventually according to c.

• changes1 , ord({nextq | 〈1, {(1, p) | p ∈ c(1, q)}〉 ∈ f}), the ordered sequence of next
transitions for processes for which the state resulting from the deliveries in dels1 is in f .

• ∀r > 1 : delsr , ord({deliver(roundpr , p, q) | nextp ∈ changesr−1 ∧ p ∈ c(roundpr , q)}),
with roundpr , 1 + ∑

r′∈[1,r[
|{nextp} ∩ changesr′ |.

This is the ordered sequence of deliveries of messages from processes that changed round
during changesr−1.



36 CHAPTER 2. MAKING HEARD-OF PREDICATES

• ∀r > 1 : changesr , ord({nextq | 〈roundqr, {(r′, p) | deliver(r′, p, q) ∈
⋃

r′′∈[1,r]
delsr′′}〉 ∈ f}) if it is not empty

ord({stop}) otherwise
,

with roundpr , 1 + ∑
r′∈[1,r[

|{nextp} ∩ changesr′ |.

This is the ordered sequence of nextp for processes such that their state after the delivered
of delsr is in f .

The main property of a standard execution of f on c is that it is both an execution of f
and an execution of c.

Lemma 2.18 (Correctness of Standard Execution). Let c be a delivered collection and f be
a strategy. Then st(f, c) ∈ execsf (c).

Proof. Let us first show that st(f, c) is an execution by showing each point of Definition 2.7.

• (Delivered after sending) By Definition 2.17 of the standard execution there are r−1
transitions nextp before the messages of p sent at round r are delivered.

• (Delivered only once) If a message sent at round r by p is delivered, we know from
the previous point that p reaches round r before the delivery. Let r′ such that changesr′
contains the r − 1 ith nextp of st(f, c).
Then the message is delivered in delsr′+1 by Definition 2.17 of the standard execution.
And for all r′′ > r′ + 1, if there are deliveries from p in delsr′′ , this entails that nextp ∈
changesr′′−1, and thus that p is not anymore at round r. And by definition of delsr′′ , it
only delivers messages sent at the current rounds of processes.
We conclude that there is only one delivery of the message.

• (Once stopped, forever stopped) By Definition 2.17 of the standard execution, if
changesr contains only stop, this means that f does not allow any process to change
rounds with the currently received messages. And by definition of delr, it only delivers
messages from processes that changed round in changesr−1.
Hence if there is some smallest rstop such that changesrstop = {stop}, then delsrstop+1 = ∅,
which means the local states of processes do not change, and thus changesrstop+1 =
{stop}.
Thus by induction, if there is some stop in st(f, c), the rest of the execution contains
only stop transitions.

Hence st(f, c) is an execution.
Next, let’s show that st(f, c) is an execution of c. By Definition 2.8, this means the messages

delivered are exactly those from c, for processes that reached the round where they send the
message. By Definition 2.17 of the standard execution, all deliveries are from messages in
c. And by Definition 2.17 of the standard execution, if p reaches round r, there is a smallest
r′ > 0 such that roundpr′ = r. This means that delsr′ contains the deliveries of all the messages
(r, p, q) such that p ∈ c(r, q).

Hence st(f, c) is an execution of c.
Finally, we show that st(f, c) is an execution of f . We check the two conditions of Defini-

tion 2.12:



2.3. DELIVERED IN, HEARD-OF OUT 37

• (All Nexts Allowed) By Definition 2.17 of the standard executions, changes of round
only occur when the local state is in f .

• (Fairness) If some process is blocked forever at some round, this means by Defini-
tion 2.17 of the standard execution that its local state was not in f for an infinite
number of changesr, and so for an infinite number of times.

We conclude that st(f, c) ∈ execsf (c).

The other construction takes a heard-of collection, and gives an execution generating it on
the total delivered collection. This canonical execution follows a simple pattern: at each round,
deliver all messages from the heard-of sets of this round, and also all message undelivered from
the previous round (the ones that were not in the heard-of sets of the previous round).

Definition 2.19 (Canonical Execution of a Heard-Of Collection). Let ho be a heard-of col-
lection.

The canonical execution of ho is can(ho) , ∏
r∈N∗

delsr.changesr, where

• dels1 , ord({deliver(1, p, q) | p ∈ ho(1, q)}), the ordered sequence of deliveries that
happen at round 1 in h.

• ∀r > 1 : delsr , ord({deliver(r, p, q) | p ∈ ho(r, q)} ∪ {deliver(r − 1, p, q) | p /∈ ho(r −
1, q)}), the ordered sequence of deliverives that happen at round r in h.

• ∀r > 0 : changesr , ord({nextp | p ∈ Π}), the ordered sequence of next transitions, one
for each process.

This canonical execution is an execution of any delivered predicate containing ctotal, the
collection where every message is delivered. Having this collection in a delivered predicate
ensures that although faults might happen, they are not forced to do so.

Lemma 2.20 (Canonical Execution is an Execution of Total Collection). Let ho be a heard-of
collection Then, the canonical execution can(ho) of ho is an execution of ctotal.

Proof. First, can(ho) is an execution by Definition 2.7 since it satisfies the three conditions:

• (Delivered only once) Every sent message is delivered either during the round it was
sent or during the next one, and thus delivered only once.

• (Delivered after sending) Every message from round r is delivered after either r− 1
or r nextp transitions for the sender p, which means at round r or r + 1. Hence the
message is delivered after being sent.

• (Once stopped, forever stopped) No process stops, so the last condition for execu-
tions is trivially satisfied.

Furthermore, for each process p and round r, all the messages from p at round r are
delivered in can(ho), either at round r or at round r + 1. Since the total collection is the
collection where every message is delivered by Definition 2.6, this entails that can(ho) is an
execution of the total Delivered collection by Definition 2.8, and thus an execution of DEL.



38 CHAPTER 2. MAKING HEARD-OF PREDICATES

Lastly, the whole point of the canonical execution of ho is that it generates ho.

Lemma 2.21 (Canonical Execution Generates its Heard-Of Collection). Let ho be a heard-of
collection. Then hcan(ho) = ho.

Proof. By Definition 2.15,

∀r > 0,∀j ∈ Π : hcan(ho)(r, j) =

p ∈ Π

∣∣∣∣∣∣∣∣∃i ∈ N :

 q
can(ho)
j [i].round = r

∧ can(ho)[i] = nextj

∧ 〈r, p〉 ∈ qcan(ho)
j [i].mes


.

By Definition 2.19 of a canonical execution, every changek of can(ho) contains a nextp for
every p ∈ Π. So the r-th nextp of can(ho) happens at changer for every p ∈ Π. And also by
Definition 2.19, the messages from round r delivered to j before changer are those in delsr;
that is, exactly the messages from processes in ho(r, j). So for every process j, its r-th nextj
in can(ho) happens at changer, after it received only the messages from round r in ho(r, j).

We conclude that ∀r > 0, ∀j ∈ Π : hcan(ho)(r, j) =p ∈ Π

∣∣∣∣∣∣∣∣∃i ∈ N :

 q
can(ho)
j [i].round = r

∧ can(ho)[i] = nextj

∧ 〈r, p〉 ∈ qcan(ho)
j [i].mes


 = ho(r, j).

Therefore hcan(ho) = ho.

2.3.5 A Complete Example: At Most F Crashes

To provide a more concrete example, let’s turn back to DELcrashF from Definition 2.2, the
message-passing model with asynchronous and reliable communication, and at most F per-
manent crashes. We now give a dominating strategy for this predicate, as well as compute its
heard-of predicate.

The folklore strategy for this model is to wait for at least n− F messages before allowing
the change of round.

Definition 2.22 (waiting for n − F messages). The strategy to wait for n − F messages is
fn−F , {q ∈ Q | |{k ∈ Π | 〈q.round, k〉 ∈ q.mes}| ≥ n− F}

To see why this strategy is used in the literature, simply remark that at least n−F messages
must be delivered to each process at each round. Thus, waiting for that many messages ensures
that no process is ever blocked. However, waiting for more will result in processes blocking
forever if F crashes occur. Rephrased with the concepts introduced above, fn−F is a valid
strategy for DELcrashF .

Lemma 2.23 (Validity of fn−F ). fn−F is valid for DELcrashF .

Proof. We proceed by contradiction: Assume fn−F is invalid for DELcrashF . Thus by Defi-
nition 2.23, there exists an invalid t ∈ execsfn−F

(DELcrashF ). By Definition 2.23 of validity,
∃p ∈ Π,∃N, ∀i ≥ N : t[i] 6= nextp: there is a smallest round r such that some process j stays
blocked at r forever in t. Because t is an execution of f , Definition 2.12 entails that infinitely
many local states of j must be not in fn−F ; if it was not the case, the fairness condition would
force the execution to contain another nextj .

Let also ct be a delivered collection of DELcrashF such that t ∈ execs(c).
We know by Definition 2.2 of DELcrashF that |ct(r, j)| ≥ n − F . The minimality of r and

the fact that t ∈ execs(c) then ensure by Definition 2.8 that all the messages in this delivered



2.3. DELIVERED IN, HEARD-OF OUT 39

set are delivered at some point in t. By Definition 2.22 of fn−F , the local state of j is then in
fn−F from this point on. By the fairness constraint of Definition 2.12, this contradicts the
fact that there is never another nextj in the suffix of t.

We conclude that fn−F is valid for DELcrashF .

The obvious next step is to prove that this strategy is dominating the predicate. But
the proof given here depends on the heard-of predicate generated by fn−F , which is thus
computed first. This heard-of predicate was first given by Charron-Bost and Schiper [37] as
a characterization of the asynchronous model with reliable communication and at most F
crashes. The intuition behind it is that even in the absence of crashes, we can make all the
processes change round by delivering any set of at least n− F messages to them.

Theorem 2.24 (Heard-Of Characterization of fn−F ).
Let HOF be the heard-of predicate defined in Table 1.1. Then HOfn−F

(DELcrashF ) = HOF .

Proof. • (⊆). Let ho ∈ HOfn−F
(DELcrashF ) and t ∈ execsfn−F

(DELcrashF ) an execution of
fn−F generating ho. By Definition 2.12 of the executions of fn−F , processes change round
(a nextk event) only when their local state is in fn−F . This means by Definition 2.22
that the local state q of processes satisfy |{k ∈ Π | 〈q.round, k〉 ∈ q.mes}| ≥ n − F}:
the process received at least n− F messages tagged with the current value of its round
counter. This in turns implies by Definition 2.15 of the heard-of collection of an execution
that ∀r ∈ N∗, ∀j ∈ Π : |ho(r, j)| ≥ n− F .

• (⊇). Let ho a heard-of collection over Π such that ∀r ∈ N, ∀j ∈ Π : |ho(r, j)| ≥ n−F . Let
t be the canonical execution of ho; since DELcrashF contains the total collection, t is an
execution of DELcrashF by Lemma 2.20. To prove that t is also an execution of fn−F , we
proceed by contradiction: assume it is not an execution of fn−F . By Definition 2.12,
the problem stems either from breaking fairness or from some nextp for some p at a
point where the local state of p is not in fn−F . Since by Definition 2.19 of a canonical
execution, ∀p ∈ Π : nextp appears an infinite number of times, the only possibility left is
the second one: there is some p ∈ Π and some nextp transition in t that happens while
the local state of p is not in fn−F . Let r be the smallest round where this happens, and j
the process to which it happens. By Definition 2.19 of a canonical execution, j received
all the messages from ho(r, j) in t before the problematic nextj . And |ho(r, j)| ≥ n−F
by hypothesis. By Definition 2.22 of fn−F , the local state of j is in fn−F from this point
on. By the fairness constraint of Definition 2.12, this contradicts the fact that j cannot
change round at this point in t while t is an execution of fn−F .

We conclude that ho ∈ HOfn−F
(DELcrashF ).

Finally, we want to vindicate the folklore intuition about this strategy: that it is optimal
in some sense. Intuitively, waiting for more than n − F messages per round means risking
waiting forever, and waiting for less is wasteful. Our domination order captures this concept
of optimality: we show that fn−F is indeed a dominating strategy for DELcrashF . Therefore,
HOfn−F

(DELcrashF ) is the dominating predicate for DELcrashF .

Theorem 2.25 (fn−F Dominates DELcrashF ). fn−F dominates DELcrashF .



40 CHAPTER 2. MAKING HEARD-OF PREDICATES

Proof. Let f be a valid strategy for DELcrashF ; the theorem follows by Definition 2.16 from
proving that f ≺DELcrash

F
fn−F – that is HOfn−F

(DELcrashF ) ⊆ HOf (DELcrashF ). We do that
now.

Let ho ∈ HOfn−F
(DELcrashF ), and let t be the canonical execution of ho. Since DELcrashF

contains the total collection, t is an execution of DELcrashF by Lemma 2.20. We only need to
prove that it is also an execution of f to conclude by Lemma 2.21 that f generates ho, and
thus that the inequality above and the theorem hold.

We do so by contradiction. Assume t is not an execution of f . By Definition 2.12, it
is either because the fairness condition is broken or because some nextp for some process p
happens when the local state of p is not in f . Since Definition 2.19 of canonical executions
implies that t contains an infinite number of nextp for every process p ∈ Π, the problem must
come from some nextj done by a process j when j’s local state is not in f . Let r be the
first round where this happens. At the point of the forbidden nextj , by Definition 2.19 of a
canonical execution, j has received all the messages from previous rounds, and all the messages
from ho(r, j). Then ho ∈ HOfn−F

(DELcrashF ) implies that ho ∈ HOF by Theorem 2.24. It
then follows from the definition of HOF in Table 1.1 that ho(r, j) contains at least n − F
processes.

Let cblock be the delivered collection where all the processes from which j did not receive
a message at the problematic next in t stop sending messages from round r onwards. So for
rounds > r, the delivered set of any process k is always ho(r, j). ∀r′ > 0, ∀k ∈ Π : cblock(r′, k) ={

Π if r′ < r

ho(r, j) otherwise
This is a delivered collection of DELcrashF by Definition 2.2: processes that stop sending

messages never do again, and at most F processes do so because ho(r, j) contains at least
n− F processes by the reasoning above.

Let t′ = st(f, cblock) be the standard execution of f on cblock. Lemma 2.18 entails than t′ is
an execution of f on cblock. Since r is the smallest round in t with a wrong nextj , for all rounds
< r the local state of j is enough for f to allow the change of round. Thus by Definition 2.17
of standard executions, all changesk for k < r contain a next transition for all processes in t′.
By the same definition, all delsk for k ≤ r of t′ contain the same deliveries for each process
than the deliveres for j in the delsk of t. Hence in t′, all the processes reach round r, all get
the same state as j in t at round r, and thus they all block at this round, which means the
suffix of t′ is made of stop only. Hence t′ is invalid, and so is f .

This contradicts the hypothesis that f is valid; we thus conclude that ho ∈
HOf (DELcrashF ).

Therefore fn−F dominates f by Definition 2.16, where f is any valid strategy forDELcrashF ,
which means that fn−F dominates DELcrashF by Definition 2.16.

This means that when confronted with a model captured by DELcrashF , there is no point
in remembering messages from past rounds – and messages from future rounds are simply
buffered. Intuitively, messages from past rounds are of no use in detecting crashes in the
current round. As for messages from future rounds, they actually serve to detect that a process
has not crashed when sending its messages from the current round. For this to actually change
the heard-of predicate, it would mean that some heard-of collection would be impossible to
generate when using this future information. But this is not the case, as there is always an
execution where no message from future rounds are delivered early (the canonical execution).



2.4. CARPE DIEM: OBLIVIOUS STRATEGIES LIVING IN THE MOMENT 41

2.4 Carpe Diem: Oblivious Strategies Living in the Moment

Let’s now turn to more general results about delivered predicates and strategies. Because of
the generality of strategies, considering them all brings many issues in proving domination.
Yet there exist interesting classes of strategies on which results can be derived.

Our first such class is the class of oblivious strategies: they depend only on the received
messages from the current round. For example, fn−F is an oblivious strategy, as it counts
messages from the current round. Despite their apparent simplicity, some oblivious strategies
dominate non-trivial delivered predicates, as in the case of fn−F and DELcrashesF .

2.4.1 Definition and Expressiveness Results

Oblivious strategies are a family of strategies in the sense of Definition 2.11 – where the
equivalence relation between the local states compare only the messages received for the current
round.

Definition 2.26 (Oblivious Strategies and Nextsf ). Let obliv be the function such that
∀q ∈ Q : obliv(q) = {k ∈ Π | 〈q.round, k〉 ∈ q.mes}. Let ≈obliv the equivalence relation defined
by q1 ≈obliv q2 , obliv(q1) = obliv(q2). The family of oblivious strategies , family(≈obliv).

For f an oblivious strategy, let Nextsf , {obliv(q) | q ∈ f}. It uniquely defines f .

Thus an oblivious strategy reduces to a collection of sets, the sets of processes from which
receiving a message in the current round is enough to change round. The strategy allows the
change of round if, and only if, the processes heard at the current round form a set in this
collection.

This provides a simple necessary condition on such a strategy f to be valid: its Nextsf set
must contains all the delivered sets from the corresponding delivered predicate. If it does not,
an execution would exists where the messages received at some round r by some process p
are exactly this delivered set, which would block forever the process p and make the strategy
invalid.

This simple necessary condition also proves sufficient.

Lemma 2.27 (Necessary and Sufficient Condition for Validity of an Oblivious Strategy). Let
DEL be a delivered predicate and f be an oblivious strategy. Then f is valid for DEL ⇐⇒
f ⊇ {q | ∃c ∈ DEL,∃p ∈ Π, ∃r > 0 : obliv(q) = c(r, p)}.

Proof. • (⇒) Let f be valid for DEL. We show by contradiction that f contains all local
states q such that ∃c ∈ DEL, ∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p). Assume there is
some qblock for which it is not the case: then ∃c ∈ DEL, r > 0 and j ∈ Π such that
obliv(qblock) = c(r, j) and q /∈ f . By Definition 2.26, this means that for every q such
that obliv(q) = obliv(qblock) = c(r, j), we have q /∈ f .

Let t = st(f, c) be the standard execution of f on c. This is a execution of f on c by
Lemma 2.18. The sought contradiction is reached by proving that t is invalid. To do so,
we split according to two cases: the first is the case where there is a blocking process
before round r, and the other is the case where there is not blocking process before round
r. This last case then uses the hypothesis on c(r, j) to show that all processes block at
r.



42 CHAPTER 2. MAKING HEARD-OF PREDICATES

– During one of the first r − 1 iterations of t, there is some process which cannot
change round. Let r′ be the smallest iteration where it happens, and k be a process
unable to change round at the r′-ith iteration. By minimality of r′, all the processes
arrive at round r′ in t; by Definition 2.17 of the standard execution, all messages
for k from round r′ are delivered before the changer′ part of the iteration. Let q be
the local state of k at the start of changer′ in the r′-ith iteration, and let q′ be any
local state of k afterward. The above tells us that as long as q′.round = q.round,
we have obliv(q) = obliv(q′) and thus q′ /∈ f . Therefore, k can never change round
while at round r′.
We conclude that t is invalid by Definition 2.23.

– For the first r − 1 iterations, all the processes change round. Thus every one
arrives at round r in the r − 1-ith iteration. By Definition 2.17 of the standard
execution, all messages from the round are delivered before the changer part of the
r-th iteration. Thus j is in a local state q at the changer part of the r-ith iteration
such that obliv(q) = c(r, j) = obliv(qblock). By hypothesis, this means q /∈ f and
thus that j cannot change round. Let q′ be any local state of j afterward. The
above tells us that as long as q′.round = r, we have obliv(q) = obliv(q′) = c(r, j)
and thus q′ /∈ f . Therefore, j can never change round while at round r.
Here too, t is invalid by Definition 2.23.

Either way, we reach a contradiction with the validity of f . Therefore f ⊇ {q | ∃c ∈
DEL,∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p)}.

• (⇐) Let DEL and f such that f ⊇ {q | ∃c ∈ DEL,∃p ∈ Π, ∃r > 0 : obliv(q) = c(r, p)}.
We show by contradiction that f is valid.
Assume the contrary: there is some t ∈ execsf (DEL) which is invalid. Thus by Defi-
nition 2.23 of validity, there are some process blocked at a round forever in t. Let r be
the smallest such round, and j be a process blocked at round r in t. By minimality of r,
all the processes arrive at round r. By Definition 2.8 of an execution of DEL, there is a
c ∈ DEL such that t is an execution of c. Which means by Definition 2.8 of an execution
of a collection that eventually all the messages from c(r, j) are delivered.
From this point on, every local state q of j satisfies obliv(q) = c(r, j); thus we have q ∈ f
by hypothesis on f . Then the fairness condition of executions of f from Definition 2.12
imposes that j does change round at some point. We conclude that j is not blocked at
round r in t, which contradicts the hypothesis that it is blocked forever at round r in
t.

What happens when taking the oblivious strategy satisfying exactly this condition for
validity? This results in a strategy dominating the other oblivious ones. It follows from the
fact that this strategy waits for the minimum sets required to be valid; hence the name of
minimal oblivious strategy.

Definition 2.28 (Minimal Oblivious Strategy). Let DEL be a delivered predicate. The
minimal oblivious strategy for DEL is fmin ,
{q | ∃c ∈ DEL, ∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p)}.



2.4. CARPE DIEM: OBLIVIOUS STRATEGIES LIVING IN THE MOMENT 43

Lemma 2.29 (Domination of Minimal Oblivious Strategy). Let DEL be a delivered predicate
and fmin be its minimal oblivious strategy. Then fmin is a dominating oblivious strategy for
DEL.

Proof. First, fmin is valid for DEL by application of Lemma 2.27. Next, we take another
oblivious strategy f , which is valid for DEL. Lemma 2.27 now gives us that fmin ⊆ f .
Hence, when fmin allows a change of round, so does f . This entails by Definition 2.12 that
all executions of fmin on DEL are also executions of f on DEL, and thus by Definition 2.15
that HOfmin

(DEL) ⊆ HOf (DEL).
We thus conclude from Definition 2.16 that fmin dominates any valid oblivious strategy

for DEL.

These strategies thus guarantee that every delivered predicate has a strategy dominating
the oblivious ones, by giving a means to build it. Of course, a formal definition is not the
same as a constructive definition, which motivates the study of minimal strategies through
the operations, and their relations to the operations on the corresponding predicates.

2.4.2 Building oblivious strategies

One fundamental property of minimal oblivious strategies is their nice behaviour under the
proposed operations (union, combination, succession and repetition). That is, they give min-
imal oblivious strategies of resulting delivered predicates. Although this holds for all opera-
tions, succession and repetition are not useful here, as the succession of two minimal oblivious
strategies is equal to their union, and the repetition of a minimal oblivious strategy is equal
to the strategy itself.

The first operation to study is therefore union. The minimal oblivious strategy of DEL1∪
DEL2 and DEL1  DEL2 is the same, as shown it the next theorem, and thus it’s the union
of the minimal oblivious strategies of DEL1 and DEL2.

Theorem 2.30 (Minimal Oblivious Strategy for Union and Succession). Let DEL1, DEL2 be
two delivered predicates, f1 and f2 the minimal oblivious strategies for, respectively, DEL1 and
DEL2. Then f1∪f2 is the minimal oblivious strategy for DEL1∪DEL2 and DEL1  DEL2.

Proof idea. Structurally, every proof in this subsection amounts to showing equality between
the strategies resulting from the operations and the minimal oblivious strategy for the delivered
predicate.

For a union, the messages that can be received at each round are the messages that can be
received at each round in the first predicate or in the second. This is also true for succession.
Given that f1 and f2 are the minimal oblivious strategies of DEL1 and DEL2, they accept
exactly the states where the messages received from the current round are in a delivered set
of DEL1 or a delivered set of DEL2. And thus f1 ∪ f2 is the minimal oblivious strategy for
DEL1 ∪DEL2 and DEL1  DEL2.

Proof. We first show that the minimal oblivious strategies of DEL1 ∪ DEL2 and DEL1  
DEL2 are equal. By Definition 2.14, we thus need to prove that {q | ∃c ∈ DEL1∪DEL2, ∃p ∈
Π,∃r > 0 : obliv(q) = c(r, p)} = {q | ∃c ∈ DEL1  DEL2, ∃p ∈ Π,∃r > 0 : obliv(q) =
c(r, p)}.

• (⊆) Let q such that ∃c ∈ DEL1 ∪DEL2, ∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p).



44 CHAPTER 2. MAKING HEARD-OF PREDICATES

– If c ∈ DEL1, then we take c2 ∈ DEL2, and take c′ = c[1, r].c2. Since by Defi-
nition 2.4 c′ ∈ c  c2, we have c′ ∈ DEL1  DEL2. And by definition of c′,
c′(r, p) = c(r, p).
We thus have c′, p and r showing that obliv(q) = c′(r, p), and thus q is in the set
on the right.

– If c ∈ DEL2, then c ∈ DEL1  DEL2 by Definition 2.4. We thus have c, p and r
showing that obliv(q) = c(r, p), and thus q is in the set on the right.

• (⊇) Let q such that ∃c ∈ DEL1  DEL2, ∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p).

– If c ∈ DEL2, then c ∈ DEL1 ∪DEL2 by Definition 2.4. We thus have c, p and r
showing that obliv(q) = c(r, p), and thus q is in the set on the left.

– If c /∈ DEL2, there exist c1 ∈ DEL1, c2 ∈ DEL2 and r′ > 0 such that c = c1[1, r′].c2
by Definition 2.4.

∗ If r ≤ r′, then by definition of c, we have c(r, p) = c1(r, p). We thus have c1, p

and r showing that obliv(q) = c1(r, p), and thus q is in the set on the left.
∗ If r > r′, then c(r, p) = c2(r − r′, p). We thus have c2, p and (r − r′) showing

that obliv(q) = c2(r − r′, p), and thus q is in the set on the left.

We now show that f1 ∪ f2 = {q | ∃c ∈ DEL1 ∪DEL2, ∃p ∈ Π, ∃r > 0 : obliv(q) = c(r, p)},
which allows us to conclude by Definition 2.28 that f1 ∪ f2 is the minimal oblivious strategy
for DEL1 ∪DEL2.

• Let q ∈ f1 ∪ f2. We fix q ∈ f1 (the case q ∈ f2 is symmetric).
Then because f1 is the minimal oblivious strategy of DEL1, by application of
Lemma 2.27, ∃c1 ∈ DEL1,∃p ∈ Π,∃r > 0 such that c1(r, p) = obliv(q). Also
c1 ∈ DEL1 ⊆ DEL1 ∪ DEL2 by Definition 2.4. We thus have c1, p and r showing
that q is in the minimal oblivious strategy for DEL1 ∪DEL2.

• Let q such that ∃c ∈ DEL1∪DEL2,∃p ∈ Π,∃r > 0 : c(r, p) = obliv(q). By Definition 2.4
of operations on strategies, and specifically union, c must be in DEL1 or in c ∈ DEL2;
we fix c ∈ DEL1 (the case DEL2 is symmetric).
Then Definition 2.28 gives us that q is in the minimal oblivious strategy of DEL1, that
is f1. We conclude that q ∈ f1 ∪ f2.

For the same reason that succession is indistinguishable from union, repetition is indistin-
guishable from the original predicate: the delivered sets are the same, because every collection
of the repetition is built from prefixes of collections of the original predicate. Thus the min-
imal oblivious strategy for a repetition is in fact the same strategy as the minimal oblivious
strategy of the original predicate.

Theorem 2.31 (Minimal Oblivious Strategy for Repetition). Let DEL be a delivered pred-
icate, and f be its minimal oblivious strategy. Then f is the minimal oblivious strategy for
DELω.



2.4. CARPE DIEM: OBLIVIOUS STRATEGIES LIVING IN THE MOMENT 45

Proof. We show that f = {q | ∃c ∈ DELω,∃p ∈ Π, ∃r > 0 : obliv(q) = c(r, p)}, which allows
us to conclude by Definition 2.28 that f is the minimal oblivious strategy for DELω.

• (⊆) Let q ∈ f . By minimality of f for DEL, ∃c ∈ DEL, ∃p ∈ Π, ∃r > 0 : obliv(q) =
c(r, p).
We take c′ ∈ DELω such that c1 = c and r2 = r; the other ci and ri don’t matter for
the proof. By Definition 2.4 of operations on predicates, and specifically repetition, we
get c′(r, p) = c(r, p) = obliv(q). We have c′, p and r showing that q is in the minimal
oblivious strategy of DELω.

• (⊇) Let q such that ∃c ∈ DELω, ∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p). By Definition 2.4 of
operations on predicates, and specifically repetition, there are ci ∈ DEL and 0 < ri <

ri+1 such that r ∈ [ri + 1, ri+1] and c(r, p) = ci(r − ri, p).
We have found ci, p and (r − ri) showing that q is in the minimal oblivious strategy for
DEL. And since f is the minimal oblivious strategy for DEL, we get q ∈ f .

Combination is different from other operations, as combining collections is done round by
round. Since oblivious strategies do not depend on the round, the combination of two oblivious
strategies will accept the combination of any two states accepted, that is, it will accept any
intersection of the delivered set of received messages from the current round in the first state
and the delivered set of received messages from the current round in the second state. Yet
when taking the combination of two predicates, maybe the collections are such that these two
delivered sets used in the intersection above never happen at the same round, and thus never
appear in the combination of collections.

To ensure that every intersection of pairs of delivered sets, one from a collection from each
predicate, happens in the combination of predicates, we add an assumption: the symmetry of
the predicate over processes and over rounds. This means that for any delivered set D of the
predicate, for any round and any process, there is a collection of the predicate where D is the
delivered set for some round and some process.

Definition 2.32 (Round Symmetric DEL). LetDEL be a delivered predicate. DEL is round
symmetric , ∀c ∈ DEL, ∀r > 0, ∀p ∈ Π, ∀r′ > 0, ∀q ∈ Π,∃c′ ∈ DEL : c(r, p) = c′(r′, q)

Theorem 2.33 (Minimal Oblivious Strategy for Combination). Let DEL1, DEL2 be two
round symmetric delivered predicates, f1 and f2 the minimal oblivious strategies for, respec-
tively, DEL1 and DEL2. Then f1

⊗
f2 is the minimal oblivious strategy for DEL1

⊗
DEL2.

Proof idea. The oblivious states of DEL1
⊗
DEL2 are the combination of an oblivious state

of DEL1 and of one of DEL2 at the same round, for the same process. Thanks to round
symmetry, this translates into the combination of any oblivious state of DEL1 with any
oblivious state of DEL2. Since f1 and f2 are the minimal oblivious strategy, they both
accept exactly the oblivious states of DEL1 and DEL2 respectively. Thus, f1

⊗
f2 accept all

the combinations of oblivious states of DEL1 and DEL2, and thus is the minimal oblivious
strategy of DEL1

⊗
DEL2.

Proof. We show that f1
⊗
f2 = {q | ∃c ∈ DEL1

⊗
DEL2, ∃p ∈ Π, ∃r > 0 : obliv(q) = c(r, p)},

which allows us to apply Lemma 2.28 to show that f1
⊗
f2 is the minimal oblivious strategy

of DEL1
⊗
DEL2.



46 CHAPTER 2. MAKING HEARD-OF PREDICATES

• Let q ∈ f1
⊗
f1. Then ∃q1 ∈ f1, ∃q2 ∈ f2 such that q = q1

⊗
q2. This also means that

q1.round = q2.round = q.round.
By minimality of f1 and f2, ∃c1 ∈ DEL1, ∃p1 ∈ Π, ∃r1 > 0 : c1(r1, p1) = obliv(q1) and
∃c2 ∈ DEL2,∃p2 ∈ Π,∃r2 > 0 : c2(r2, p2) = obliv(q2).
Moreover, by Definition 2.32 of round symmetry, the hypothesis on DEL2 ensures that
∃c′2 ∈ DEL2 : c′2(r1, p1) = c2(r2, p2).
We take c = c1

⊗
c′2. obliv(q) = obliv(q1)∩obliv(q2) = c1(r1, p1)∩c2(r2, p2) = c1(r1, p1)∩

c′2(r1, p1) = c(r1, p1).
We have c, p1 and r1 showing that q is in the minimal oblivious strategy for
DEL1

⊗
DEL2.

• Let q such that ∃c ∈ DEL1
⊗
DEL2,∃p ∈ Π,∃r > 0 : c(r, p) = obliv(q). By Defini-

tion 2.4 of operations on predicates, and specifically of combination, ∃c1 ∈ DEL1, ∃c2 ∈
DEL2 : c = c1

⊗
c2.

We take q1 such that q1.round = r, obliv(q1) = c1(r, p) and ∀r′ 6= r : q1(r′) = q(r′); we
also take q2 such that q2.round = r, obliv(q2) = c2(r, p) and ∀r′ 6= r : q2(r′) = q(r′).
Then q = q1

⊗
q2. And by Definition 2.28 of minimal oblivious strategies, f1 and f2 being

respectively the minimal oblivious strategies of DEL1 and DEL2 imply that q1 ∈ f1 and
q2 ∈ f2.
We conclude that q ∈ f1

⊗
f2.

This subsection shows that as long as predicates are built from simple building blocks
with known minimal oblivious strategy, the minimal oblivious strategy of the result can be
explicitly constructed.

2.4.3 Computing Heard-Of Predicates

Once the minimal oblivious strategy computed, the next step is to extract the heard-of pred-
icate for this strategy: the smallest predicate (all its collections are contained in the other
predicates) generated by an oblivious strategy for this delivered predicate. This ends up being
simple: it is the product of all delivered sets.

Definition 2.34 (Heard-Of Product). Let S ⊆ P(Π). The heard-of product generated
by S, HOProd(S) , {ha heard-of collection | ∀p ∈ Π, ∀r > 0 : h(r, p) ∈ S }.

Here is the intuition: defining a heard-of collection requires, for each round and each
process, the corresponding heard-of set. A heard-of product is then the set of all collections
that have heard-of sets from the set given as argument. So the totalsq heard-of predicate
(containing only the total collection) is the heard-of product of the set Π. And HOF is the
heard-of product of all subsets of Π of size ≥ n− F .

This segues into the following lemma, which links the Nextsf of some valid oblivious
strategy and the heard-of predicate for this strategy: the predicate is the heard-of product of
the Nextsf .



2.4. CARPE DIEM: OBLIVIOUS STRATEGIES LIVING IN THE MOMENT 47

Lemma 2.35 (Heard-Of Predicate of an Oblivious Strategy). Let DEL be a delivered pred-
icate containing ctotal and let f be a valid oblivious strategy for DEL. Then HOf (DEL) =
HOProd(Nextsf ).

Proof. • (⊆) To prove this first direction, we show that the heard-of sets of any collection
in HOf (DEL) are in Nextsf . This then entails that HOf (DEL) = HOProd(Nextsf ).
By Definition 2.15 of the heard-of collection of an execution, every heard-of set contains
the set of messages from the current round that was already received at the nextp
transition where the process p changed round. By Definition 2.12 of the executions of
a strategy, such a nextp transition can only happen if the local state of the process p is
in f . And by Definition 2.26 of oblivious strategies, f contains exactly the states such
that the messages received from the current round form a set in Nextsf .
Therefore the heard-of set of any collection generated by f on a collection of DEL are
necessarily in Nextsf .

• (⊇) Let ho be a heard-of collection such that ∀r > 0,∀j ∈ Π : ho(r, j) ∈ Nextsf . Let t
be the canonical execution of ho. It is an execution by Lemma 2.20. By Definition 2.12
it is also an execution of f because at each round, processes receive a set of messages
in Nextsf . This entails that the local states are in f , by Definition 2.26 of oblivious
strategies. Hence t is an execution of f on DEL. Since t = can(ho), Lemma 2.21 implies
that ht = ho.
We conclude that ho ∈ HOf (DEL).

Thanks to this characterization, the heard-of predicate generated by the minimal strategies
for the operations is computed in terms of the heard-of predicate generated by the original
minimal strategies.

Theorem 2.36 (Heard-Of Predicate of Minimal Oblivious Strategies). Let
DEL,DEL1, DEL2 be delivered predicates containing ctotal. Let f, f1, f2 be their respective
minimal oblivious strategies. Then:

• HOf1∪f2(DEL1 ∪DEL2) = HOf1∪f2(DEL1  DEL2) = HOProd(Nextsf1 ∪Nextsf2)

• If DEL1 or DEL2 are round symmetric, then:
HOf1

⊗
f2

(DEL1
⊗
DEL2) = HOProd({n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}).

• HOf (DELω) = HOf (DEL).

Proof. Obviously, we want to apply Lemma 2.35. Then we first need to show that the DELs
contain ctotal.

• By hypothesis, DEL1 and DEL2 contain ctotal. Then DEL1 ∪DEL2 trivially contains
it too by Definition 2.4 of operations on predicates.

• By hypothesis, DEL1 and DEL2 contain ctotal. Then DEL1
⊗
DEL2 contains

ctotal
⊗
ctotal = ctotal by Definition 2.4 of operations on predicates.

• By hypothesis, DEL1 andDEL2 contain ctotal. ThenDEL1  DEL2 ⊇ DEL2 contains
it too by Definition 2.4 of operations on predicates.



48 CHAPTER 2. MAKING HEARD-OF PREDICATES

• By hypothesis, DEL contains ctotal. We can recreate ctotal by taking all ci = ctotal and
whichever ri. Thus, DELω contains ctotal by Definition 2.4 of operations on predicates.

Next, the strategies f1 ∪ f2, f1
⊗
f2 and f are the respective minimal oblivious strategies

by Theorem 2.30, Theorem 2.33 and Theorem 2.31. They are also valid by Theorem 2.27.
Lastly, we need to show that the Nextsf for the strategies corresponds to the generating

sets in the theorem.

• We show Nextsf1∪f2 = Nextsf1 ∪ Nextsf2 , and thus that HOProd(Nextsf1∪f2) =
HOProd(Nextsf1 ∪Nextsf2)

– (⊆) Let n ∈ Nextsf1∪f2 . Then ∃q ∈ f1 ∪ f2 : obliv(q) = n. By Definition 2.4 of
operations on predicates, and specifically union, q ∈ f1 or q ∈ f2. We fix q ∈ f1
(the case q ∈ f2 is symmetric). Then n ∈ Nextsf1 by Definition 2.26 of oblivious
strategies.
We conclude that n ∈ Nextsf1 ∪Nextsf2 .

– (⊇) Let n ∈ Nextsf1 ∪ Nextsf2 . We fix n ∈ Nextsf1 (as always, the other case
is symmetric). Then ∃q ∈ f1 : obliv(q) = n. As q ∈ f1 implies q ∈ f1 ∪ f2, we
conclude that n ∈ Nextsf1∪f2 by Definition 2.26 of oblivious strategies.

• We show Nextsf1
⊗

f2
= {n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}, and thus that

HOProd(Nextsf1
⊗

f2
) = HOProd({n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}).

– (⊆) Let n ∈ Nextsf1
⊗

f2
. Then ∃q ∈ f1

⊗
f2 : obliv(q) = n. By Defi-

nition 2.4 of operations on predicates, and specifically of combination, ∃q1 ∈
f1, ∃q2 ∈ f2 : q1.round = q2.round = q.round ∧ q = q1

⊗
q2. This means

n = obliv(q) = obliv(q1) ∩ obliv(q2).
We conclude that n ∈ {n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2} by Definition 2.26
of oblivious strategies.

– (⊇) Let n ∈ {n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}. Then ∃n1 ∈ Nextsf1 , ∃n2 ∈
Nextsf2 : n = n1 ∩ n2. By Definition 2.26 of oblivious strategies, and because f1
and f2 are oblivious strategies, we can find q1 ∈ f1 such that obliv(q1) = n1, q2 ∈ f2
such that obliv(q2) = n2, and q1.round = q2.round.
Then q = q1

⊗
q2 is a state of f1

⊗
f2. We have obliv(q) = n1 ∩ n2 = n.

We conclude that n ∈ Nextsf1
⊗

f2
by Definition 2.26 of oblivious strategies.

• Trivially, Nextsf = Nextsf .

2.4.4 When Oblivious is Enough

Finally, the value of oblivious strategies depends on which delivered predicates have such
a dominating strategy. DELcrashF does; let’s now extend this result to delivered predicates
satisfying the so-called common round property. This condition captures the fact that given
any delivered set D, one can build, for any r > 0, a delivered collection where processes receive
all the messages up to round r, and then they share D as their delivered set in round r. As a
limit case, the predicate also contains the total collection.



2.4. CARPE DIEM: OBLIVIOUS STRATEGIES LIVING IN THE MOMENT 49

Definition 2.37 (Common Round Property). Let DEL be a Delivered Predicate. DEL has
the common round property ,

• (Total collection) DEL contains the total collection ctotal.

• (Common round) ∀c ∈ DEL,∀r > 0,∀j ∈ Π, ∀r′ > 0, ∃c′ ∈ DEL,∀p ∈ Π : (∀r′′ < r′ :
c′(r′′, p) = Π ∧ c′(r′, p) = c(r, j))

What the common round property captures is what makes DELcrashF be dominated by an
oblivious strategy: if one process j might block at round r even after receiving all messages
from round r in some collection c of DEL, and all messages from rounds < r, then there is a
collection and an execution where all processes block in the same way. The collection ensures
that the delivered collection gives each process the same delivered sets (Π) for rounds < r, and
c(r, j) at round r. The execution is the standard execution of this collection, that puts every
process at round r in the same blocking state than j. Hence a deadlock. The conclusion is
that any valid strategy should allow to change round when all messages from previous rounds
are received, and the messages received for the current round form a delivered set from a
collection of DEL.

Applying this reasoning to the canonical executions of heard-of collections from
HOfmin

(DEL) yields that the canonical executions are executions of any valid strategy for
DEL (not only oblivious ones), and thus that ∀f a valid strategy for DEL, HOfmin

(DEL) ⊆
HOf (DEL). That is to say, DEL is dominated by an oblivious strategy.

Theorem 2.38 (Sufficient Condition of Oblivious Domination). Let DEL be a delivered pred-
icate satisfying the common round property. Then, there is an oblivious strategy which domi-
nates DEL.

Proof. Let fmin be the minimal oblivious strategy for DEL – it dominates the oblivi-
ous strategies for DEL by Lemma 2.29. We now prove that fmin dominates DEL. This
amount to showing that for f ′ be a valid strategy for DEL, we have f ′ ≺DEL fmin, that
is HOfmin

(DEL) ⊆ HOf ′(DEL). Let ho ∈ HOfmin
(DEL) and t be the canonical execution of

ho. We show that t is an execution of f ′, which entails by Lemma 2.21 that ho ∈ HOf ′(DEL).
By Definition 2.37 of the common round property, DEL contains ctotal. And by

Lemma 2.20, t is an execution of ctotal, and thus an execution of DEL. We now prove by
contradiction it is also an execution of f ′ on DEL. Assume it is not. By Definition 2.12 of
the executions of a strategy, the problem comes either from breaking fairness or from some
nextj for some process j at a point where the local state of j is not in f ′. Since for every
j ∈ Π : nextj happens an infinite number of times in t by Definition 2.19 of a canonical
execution, the only possibility left is the second one: some nextj in t is done while the local
state of j is not in f ′. There thus exists a smallest r such that some proces j is not allowed
by f ′ to change round when nextj is played at round r in t.

Lemma 2.35 yields that HOfmin
(DEL) = HOProd(Nextsfmin

). And by Definition 2.28
of minimal oblivious strategies, Nextsfmin

= {c(r′, p) | c ∈ DEL ∧ r′ > 0 ∧ p ∈ Π}. Thus
∃c ∈ DEL, ∃r′ > 0, ∃p ∈ Π : ho(r, j) = c(r′, p). Next, by Definition 2.37 of the common round
property, DEL satisfying this property allows us to build cblock ∈ DEL such that ∀r′′ < r,∀k ∈
Π : cblock(r′′, k) = Π and ∀k ∈ Π : cblock(r, k) = c(r′, j) = ho(r, j).

Finally, we build tblock = st(f ′, cblock) the standard execution of f ′ on cblock. By
Lemma 2.18, we know tblock is an execution of f on cblock. We then show that it is invalid by
examining the two possibilities.



50 CHAPTER 2. MAKING HEARD-OF PREDICATES

• During one of the first r−1 iterations of tblock, there is some process that cannot change
round. Let r′ be the smallest iteration where it happens, and k be a process unable to
change round at the r′-ith iteration.
By minimality of r′, all the processes arrive at round r′, and by definition of cblock they
all receive the same messages as k before changesr′ . But that means every process has
the same local state as k. Thus, all the processes are blocked at round r′, there are no
more next or deliveries, and tblock is therefore invalid by Definition 2.23 of validity.

• For the first r − 1 iterations, every process changes round. Thus, everyone arrives at
round r. By Definition 2.17 of the standard execution, all messages from round r are
delivered before the changer section. The definition of cblock also ensures that every
process received the same messages, that is all the messages from round < r and all the
messages from ho(r, j). These are exactly the messages received by j in t at round r.
But by hypothesis, j is blocked in this state in t. We thus deduce that all the processes
are blocked at round r in tblock, and thus that it is an invalid execution by Definition 2.23
of validity.

Either way, we deduce that f ′ is invalid, which is a contradiction.
We conclude that t is an execution of f ′ on DEL. Lemma 2.21 therefore implies that

ho ∈ HOf ′(DEL).
This entails that HOfmin

(DEL) ⊆ HOf ′(DEL), and thus that f ′ ≺DEL fmin. We conclude
taht fmin dominates DEL by Definition 2.16.

What’s more, this condition is maintained by the operations. Hence any predicate built
from ones satisfying this condition will still be dominated by an oblivious strategy.

Theorem 2.39 (Domination by Oblivious for Operations). Let DEL,DEL1, DEL2 be deliv-
ered predicates satisfying the common round property. Then DEL1 ∪DEL2, DEL1

⊗
DEL2,

DEL1  DEL2, DELω also satisfy the common round property.

Proof. Thanks to Theorem 2.38, we only have to show that the condition is maintained by the
operations; the domination by an oblivious strategy follows directly from the Theorem 2.38.

The fact that ctotal is still in the results of the operations was already shown in the proof
of Theorem 2.36.

Then we show the invariance of the common round part.

• Let c ∈ DEL1 ∪ DEL2. Thus c ∈ DEL1 or c ∈ DEL2. We fix c ∈ DEL1 (the other
case is symmetric). Then for p ∈ Π, r > 0 and r′ > 0, we get a c′ ∈ DEL1 satisfying the
condition of Definiton 2.37 by the hypothesis that DEL1 satisfies the common round
property. And since DEL1 ⊆ DEL1 ∪DEL2, we get c′ ∈ DEL1 ∪DEL2.
We conclude that the condition still holds for DEL1 ∪DEL2.

• Let c ∈ DEL1
⊗
DEL2. Then ∃c1 ∈ DEL1, ∃c2 ∈ DEL2 : c = c1

⊗
c2. For p ∈ Π, r > 0

and r′ > 0, our hypothesis on DEL1 and DEL2 ensures that there are c′1 ∈ DEL1
satisfying the condition of Definition 2.37 for c1 and c′2 ∈ DEL2 satisfying the condition
of Definition 2.37 for c2.
We argue that c′ = c′1

⊗
c′2 satisfies the condition of Definition 2.37 for c. Indeed,

∀r′′ < r′, ∀q ∈ Π : c(r′′, q) = c′1(r′′, q)⊗ c′2(r′′, q) = Π and ∀q ∈ Π : c(r′, q) =
c′1(r′, q)⊗ c′2(r′, q) = c1(r, p)⊗ c2(r, p) = c(r, p).



2.5. NO FUTURE: CONSERVATIVE TO THE END 51

We conclude that the condition of Definition 2.37 still holds for DEL1
⊗
DEL2.

• Let c ∈ DEL1  DEL2. Since if c ∈ DEL2 the condition of Definition 2.37 trivially
holds by hypothesis, we study the case where succession actually happens. Hence, ∃c1 ∈
DEL1,∃c2 ∈ DEL2, ∃rchange > 0 : c = c1[1, rchange].c2. For p ∈ Π, r > 0 and r′ > 0, we
separate two cases.

– if r ≤ rchange, then our hypothesis on DEL1 ensures that there is c′1 ∈ DEL1
satisfying the condition of Definition 2.37 for c1. We argue that c′ = c′1[1, r′].c2 ∈
DEL1  DEL2 satisfies the condition of Definition 2.37 for c.
Indeed, ∀r′′ < r′,∀q ∈ Π : c′(r′′, q) = c′1(r′′, q) = Π, and ∀q ∈ Π : c′(r′, q) =
c1(r, p) = c(r, p)

– if r > rchange, then our hypothesis on DEL2 ensures that there is c′2 ∈ DEL2
satisfying the condition of Definition 2.37 for c2 at p and r − rchange. That is,
c′2[1, r′ − 1] = ctotal[1, r′ − 1] ∧ ∀q ∈ Π : c′2(r′, q) = c2(r − rchange, p) We argue that
c′ = c′2 ∈ DEL1  DEL2 satisfies the condition of Definition 2.37 for c.
Indeed, ∀r′′ < r′,∀q ∈ Π : c′2(r′′, q) = Π, and ∀q ∈ Π : c′2(r′, q) = c2(r −
rchange, p) = c(r, p)

We conclude that the condition of Definition 2.37 still holds for DEL1  DEL2.

• Let c ∈ DELω. Let (ci) and (ri) be the collections and indices defining c. We take
p ∈ Π, r > 0 and r′ > 0. Let i > 0 be the integer such that r ∈ [ri + 1, ri+1]. By
hypothesis on DEL, There is c′i ∈ DEL satisfying the condition of Definition 2.37 for ci
at p and r − ri. That is, c′i[1, r′ − 1] = ctotal[1, r′ − 1] ∧ ∀q ∈ Π : c′i(r′, q) = ci(r − ri, p).
We argue that c′i ∈ DEL satisfies the condition of Definition 2.37 for c. Indeed, ∀r′′ ≤
r′,∀q ∈ Π, we have: c′i(r′′, q) = Π and ∀q ∈ Π : c′i(r′, q) = ci(r − ri, p) = c(r, p).
We conclude that the condition of Definition 2.37 still holds for DELω.

Therefore, as long as the initial building blocks satisfying the common round property, so
does the result of the operations – and thus the latter is dominated by its minimal oblivious
strategy. A strategy that can be computed easily from the previous results in this section.

2.5 No Future: Conservative to the End

The class of considered strategies now broadens, by considering past rounds and the round
number in addition to the present round. This is a generalization of oblivious strategies, that
trades simplicity for expressivity, while retaining a nice structure.

2.5.1 Definition and Expressiveness Results

Definition 2.40 (Conservative Strategy). Let cons be the function such that ∀q ∈
Q, cons(q) , 〈q.round, {〈r, k〉 ∈ q.mes | r ≤ q.round}〉. Let ≈cons the equivalence rela-
tion defined by q1 ≈cons q2 , cons(q1) = cons(q2). The family of conservative strategies
, family(≈cons).



52 CHAPTER 2. MAKING HEARD-OF PREDICATES

We write NextsCf , {cons(q) | q ∈ f} for the set of conservative states in f . This uniquely
defines f .

In analogy with the case of oblivious strategies, there is an intuitive necessary and sufficient
condition for such a strategy to be valid for a given delivered predicate.

Lemma 2.41 (Necessary and Sufficient Condition for Validity of a Conservative Strategy). Let
DEL be a delivered predicate and f be a conservative strategy. Then f is valid for DEL ⇐⇒
f ⊇ {q ∈ Q | ∃c ∈ DEL,∃p ∈ Π,∀r ≤ q.round : q(r) = c(r, p)}.

Proof. • (⇒) Let f be valid for DEL. We show by contradiction that it satisfies the right-
hand side of the above equivalence. Assume there is qblock a local state such that
∃c ∈ DEL,∃r > 0, ∃j ∈ Π : cons(qblock) = 〈r, {〈r′, k〉 | r′ ≤ r ∧ k ∈ c(r′, j)}〉 and
q /∈ f . By Definition 2.40, this means that for every q such that cons(q) = cons(qblock =
〈r, {〈r′, k〉 | r′ ≤ r ∧ k ∈ c(r′, j)}〉, q /∈ f .
Let t = st(f, c) be the standard execution of f on c. This is an execution of f on t

by Lemma 2.18. The sought contradiction is reached by proving that t is invalid for
DEL, and thus f is invalid for DEL too. To do so, we split according to two cases: the
first is the case where there is a blocking process before round r, and the other uses the
hypothesis on the prefix of c for j up to round r.

– During one of the first r − 1 iterations of t, there is some process which cannot
change round. Let r′ be the smallest iteration of the canonical execution where it
happens, and k be a process unable to change round at the r′-ith iteration.
By minimality of r′, all the processes arrive at round r′ in t; by Definition 2.17 of
the standard execution, all messages for k from all rounds up to r′ are delivered
before the change part of the iteration. Let q the local state of k at the start of
changer′ , and let q′ be any local state of k afterward. The above tells us that as
long as q′.round = q.round, we have cons(q) = cons(q′) and thus q′ /∈ f . Therefore,
k can never change round while at round r′.
We conclude that t is invalid for DEL by Definition 2.23.

– For the first r − 1 iterations, all the processes change round. Thus, every one
arrives at round r in the r − 1-th iteration. By Definition 2.17 of the standard
execution, all messages from rounds up to r are delivered before the changer part
of the r-th iteration. Thus j is in a local state q at the changer part of the r-ith
iteration such that cons(q) = 〈r, {〈r′, k〉 | r′ ≤ r ∧ k ∈ c(r′, j)}〉 = cons(qblock). By
hypothesis, this means q /∈ f thus that j cannot change round. Let q′ be any local
state of j afterward. The above tells us that as long as q′.round = q.round, we have
cons(q) = cons(q′) and thus q′ /∈ f . Therefore, j can never change round while at
round r.
Here too, t is invalid for DEL by Definition 2.23.

Either way, we reach a contradiction with the validity of f for DEL.

• (⇐) Let DEL and f such that ∀c ∈ DEL, 〈r, {〈r′, k〉 | r′ ≤ r ∧ k ∈ c(r′, j)}〉 ∈ NextsCf .
We show by contradiction that f is valid for DEL.
Assume the contrary: there is some t ∈ execsf (DEL) that is invalid for DEL. Thus,
there are some process blocked at a round forever in t. Let r be the smallest such round,



2.5. NO FUTURE: CONSERVATIVE TO THE END 53

and j be a process blocked at round r in t. By minimality of r, all the processes arrive
at round r. By Definition 2.8 of an execution of DEL, there is a c ∈ DEL such that t
is an execution of c. Which means by Definition 2.8 of an execution of a collection that
eventually all messages from all the delivered sets of j up to round r are delivered.
From this point on, every local state q of j satisfies cons(q) = 〈r, {〈r′, k〉 | r′ ≤ r ∧ k ∈
c(r′, j)}〉; thus we have q ∈ f by hypothesis on f . Then the fairness condition of
executions of f from Definition 2.12 imposes that j does change round at some point.
We conclude that j is not blocked at round r in t, which contradicts the hypothesis
that j is blocked forever at round r in t.

The strategy satisfying exactly this condition is the minimal conservative strategy of DEL,
and it is a strategy dominating all the conservative strategies for this delivered predicate.

Definition 2.42 (Minimal Conservative Strategy). Let DEL be a delivered predicate. Then
the minimal conservative strategy for DEL is fmin , the conservative strategy such that
f = {q ∈ Q | ∃c ∈ DEL, ∃p ∈ Π, ∀r ≤ q.round : q(r) = c(r, p)}.

Intuitively, when every message from a prefix is delivered, there is no message left from
past and present; a valid conservative strategy thus has to accept the state, or it would be
blocked forever.

Remark 2.43 (Prefix and conservative state of a prefix). Intuitively, a prefix of a collection
c for a process p at round r is the sequence of sets of messages received by p at rounds ≤ r in
c. Then we can define a state corresponding to this prefix by fixing its round at r and adding
to it the messages in the prefix. This is the conservative state of the prefix. The prefixes of a
delivered predicate are then all the prefixes of all its collections.

Lemma 2.44 (Domination of Minimal Conservative Strategy). Let DEL be a delivered pred-
icate and fmin be its minimal conservative strategy. Then fmin dominates the conservative
strategies for DEL.

Proof. First, fmin is valid for DEL by application of Lemma 2.41. Next, we take another
conservative strategy f , valid for DEL. Lemma 2.41 gives us that fmin ⊆ f . Hence, when
fmin allow a change of round, so does f . This entails by Definition 2.12 that all the executions
of fmin for DEL are also executions of f for DEL, and thus by Definition 2.15 that the
HOfmin

(DEL) ⊆ HOf (DEL).
We thus conclude from Definition 2.16 that fmin dominates any valid conservative strategy

for DEL.

2.5.2 Building conservative strategies

Like oblivious strategies, minimal conservative strategies give minimal conservative strategies
of resulting delivered predicates.

Theorem 2.45 (Minimal Conservative Strategy for Union). Let DEL1,DEL2 be two delivered
predicates, f1 and f2 the minimal conservative strategies for, respectively, DEL1 and DEL2.
Then f1 ∪ f2 is the minimal conservative strategy for DEL1 ∪DEL2.



54 CHAPTER 2. MAKING HEARD-OF PREDICATES

Proof. We only have to show that f1 ∪ f2 is equal to Definition 2.42.

• (⊇) Let q be a state such that ∃c ∈ DEL1 ∪ DEL2,∃p ∈ Π such that ∀r ≤ q.round :
q(r) = c(r, p). If c ∈ DEL1, then q ∈ f1, by Definition 2.42 of the minimal conservative
strategy because f1 is the minimal conservative strategy for DEL1, and by application
of Lemma 2.41. Thus, q ∈ f1 ∪ f2. If c ∈ DEL2, the same reasoning apply with f2 in
place of f1. We conclude that q ∈ f1 ∪ f2.

• (⊆) Let q ∈ f1 ∪ f2. This means that q ∈ f1 ∨ q ∈ f2. The case where it is in
both can be reduced to any of the two. If q ∈ f1, then by Definition 2.42 of the
minimal conservative strategy and by minimality of f1, ∃c1 ∈ DEL1, ∃p1 ∈ Π such that
∀r ≤ q.round : q(r) = c1(r, p1). DEL1 ⊆ DEL1 ∪ DEL2, thus c1 ∈ DEL1 ∪ DEL2.
We found the c and p necessary to show q is in the minimal conservative strategy for
DEL1 ∪ DEL2. If q ∈ f2, the reasoning is similar to the previous case, replacing f1 by
f2 and DEL1 by DEL2.

For the other three operations, slightly more structure is needed on the predicates. More
precisely, they have to be independent of the processes. Any prefix of a process p in a collection
of the predicate is also the prefix of any other process q in a possibly different collection of
the same DEL. Hence, the behaviors (fault, crashes, loss) are not targeting specific processes.
This restriction fits the intuition behind many common fault models.

Definition 2.46 (Prefix Symmetric DEL). Let DEL be a delivered predicate. DEL is prefix
symmetric , ∀c ∈ DEL, ∀p ∈ Π,∀r > 0,∀q ∈ Π, ∃c′ ∈ DEL, ∀r′ ≤ r : c′(r′, q) = c(r′, p)

This differs from the previous round symmetric DEL, in that here we focus on prefixes,
while the other focused on rounds. Notice that none implies the other: round symmetry says
nothing about the rest of the prefix, and prefix symmetry says nothing about the delivered
sets when rounds are different.

Assuming prefix symmetry, the conservation of the minimal conservative strategy by com-
bination, succession and repetition follows.

Theorem 2.47 (Minimal Conservative Strategy for Combination). Let DEL1,DEL2 be two
prefix symmetric delivered predicates, f1 and f2 the minimal conservative strategies for, respec-
tively, DEL1 and DEL2. Then f1

⊗
f2 is the minimal conservative strategy for DEL1

⊗DEL2.

Proof idea. Since f1 and f2 are the minimal conservative strategies of DEL1 and DEL2,
NextsCf1

is the set of the conservative states of prefixes of DEL1 and NextsRf2
is the set of

the conservative states of prefixes of DEL2. Also, the states accepted by f1
⊗
f2 are the

combination of the states accepted by f1 and the states accepted by f2. And the prefixes of
DEL1

⊗DEL2 are the prefixes of DEL1 combined with the prefixes of DEL2 for the same
process. Thanks to prefix symmetry, we can take a prefix of DEL2 and any process, and find
a collection such that the process has that prefix. Therefore the combined prefixes for the same
process are the same as the combined prefixes of DEL1 and DEL2. Thus, NextsCf1

⊗
f2

is the
set of conservative states of prefixes of DEL1

⊗DEL2, and f1
⊗
f2 is its minimal conservative

strategy.



2.5. NO FUTURE: CONSERVATIVE TO THE END 55

Proof. We only need to show that f1
⊗
f2 is equal to Definition 2.42.

• (⊇) Let q be a state such that ∃c ∈ DEL1⊗DEL2, ∃p ∈ Π such that ∀r ≤ q.round :
q(r) = c(r, p). By definition of c, ∃c1 ∈ DEL1,∃c2 ∈ DEL2 : c1

⊗
c2 = c. We take q1

such that q1.round = q.round and ∀r > 0 :(
q1(r) = c1(r, p) if r ≤ q.round
q1(r) = q(r) otherwise

)
. We also take q2 such that q2.round = q.round and

∀r > 0 :
(
q2(r) = c2(r, p) if r ≤ q.round
q2(r) = q(r) otherwise

)
.

First, f1 and f2 are valid for their respective predicate by Lemma 2.41 and Defini-
tion 2.42. Then by validity of f1 and f2 and by application of Lemma 2.41, we get
q1 ∈ f1 and q2 ∈ f2. We also see that q = q1

⊗
q2. Indeed, for r ≤ q.round, we

have q(r) = c(r, p) = c1(r, p) ∩ c2(r, p) = q1(r) ∩ q2(r); and for r > q.round, we have
q(r) = q(r) ∩ q(r) = q1(r) ∩ q2(r).
Therefore q ∈ DEL1

⊗DEL2.

• (⊆) Let q ∈ f1
⊗
f2. By Definition 2.14 of operations on strategies, and specifically

combination, ∃q1 ∈ f1,∃q2 ∈ f2 such that q1.round = q2.round = q.round and q =
q1
⊗
q2.

Since f1 and f2 are minimal conservative strategies of their respective DELs, by Def-
inition 2.42 ∃c1 ∈ DEL1,∃p1 ∈ Π such that ∀r ≤ q.round : q1(r) = c1(r, p1); and
∃c2 ∈ DEL2, ∃p2 ∈ Π such that ∀r ≤ q.round : q2(r) = c2(r, p2).
By Definition 2.46 of prefix symmetry, the fact that DEL2 is prefix symmetric implies
that ∃c′2 ∈ DEL2 such that ∀r ≤ q.round : c′2(r, p1) = c2(r, p2). Hence, ∀r ≤ q.round :
q2(r) = c′2(r, p1).
By taking c = c1

⊗
c2, we get ∀r ≤ q.round : q(r) = q1(r)∩ q2(r) = c1(r, p1)∩ c2(r, p1) =

c(r, p1).
We found c and p showing that q is in the minimal conservative strategy for
DEL1

⊗DEL2.

Theorem 2.48 (Minimal Conservative Strategy for Succession). Let DEL1,DEL2 be two prefix
symmetric delivered predicates, f1 and f2 the minimal conservative strategies for, respectively,
DEL1 and DEL2. Then f1  f2 is the minimal conservative strategy for DEL1  DEL2.

Proof idea. Since f1 and f2 are the minimal conservative strategies of DEL1 and DEL2,
NextsCf1 is the set of the conservative states of prefixes of DEL1 and NextsCf2

is the set
of the conservative states of prefixes of DEL2. Also, the states accepted by f1  f2 are the
succession of the states accepted by f1 and the states accepted by f2. And the prefixes of
DEL1  DEL2 are the successions of prefixes of DEL1 and prefixes of DEL2 for the same
process. But thanks to prefix symmetry, we can take a prefix of DEL2 and any process, and
find a collection such that the process has that prefix.

Therefore the succession of prefixes for the same process are the same as the succession of
prefixes of DEL1 and DEL2. Thus, NextsCf1 f2

is the set of conservative states of prefixes of
DEL1  DEL2, and is therefore its minimal conservative strategy.



56 CHAPTER 2. MAKING HEARD-OF PREDICATES

Proof. We only need to show that f1  f2 is equal to Definition 2.42.
• (⊇) Let q be a state such that ∃c ∈ DEL1  DEL2,∃p ∈ Π such that ∀r′ ≤ q.round :
q(r′) = c(r′, p). By Definition 2.4 of the operations on predicates, and specifically of
succession, ∃c1 ∈ DEL1,∃c2 ∈ DEL2, ∃r > 0 : c = c1[1, r].c2.

– If r = 0, then c[1, r] = c2[1, r], and thus ∀r′ ≤ q.round : q(r′) = c2(r′, p). First, f2
is valid for DEL2 by Lemma 2.41 and Definition 2.42. Then the validity of f2 and
Lemma 2.41 allow us to conclude that q ∈ f2 and thus that q ∈ f1  f2.

– If r > 0, we have two cases to consider.
∗ If q.round ≤ r, then ∀r′ ≤ q.round : q(r′) = c1(r′, p) f1 is also valid for
DEL1 by Lemma 2.41 and Definition 2.42. We conclude by validity of f1 and
application of Lemma 2.41 that q ∈ f1 and thus that q ∈ f1  f2.

∗ If q.round > r, then c[1, q.round] = c1[1, r].c2[1, q.round− r].
We take q1 such that q1.round = r and ∀r′ > 0 :(
q1(r′) = c1(r′, p) if r′ ≤ q1.round

q1(r′) = q(r′) otherwise

)
. We also take q2 such that q2.round =

q.round− r and ∀r′ > 0 :
(
q2(r′) = c2(r′, p) if r′ ≤ q2.round

q2(r′) = q(r′ − q.round) otherwise

)
.

Then by validity of f1 and f2 for their respective predicates, and by application
of Lemma 2.41, we get q1 ∈ f1 and q2 ∈ f2. We also see that q = q1  q2.
Indeed, for r′ ≤ q1.round = r, we have q(r′) = c(r′, p) = c1(r′, p) = q1(r′); for
r′ ∈ [q1.round+ 1, q.round], we have q(r′) = c(r′, p) = c2(r′ − r, p) = q2(r′ − r)
and for r′ > q.round we have q(r′) = q2(r′ − q.round).
We conclude that q ∈ f1  f2.

• (⊆) Let q ∈ f1  f2. By Definition 2.14 of operations for strategies, specifically succes-
sion, there are three possibilities for q.

– If q ∈ f1, then by Definition 2.42 of the minimal conservative strategy and minimal-
ity of f1 for DEL1, we have ∃c1 ∈ DEL1, ∃p1 ∈ Π : ∀r ≤ q.round : q(r) = c1(r, p1).
Let c2 ∈ DEL2. We take c = c1[1, q.round].c2; we have c ∈ c1  c2 by Definition 2.4
of operations for predicates.
Then, ∀r ≤ q.round : q(r) = c1(r, p1) = c(r, p1). We found c and p showing that q
is in the minimal conservative strategy for DEL1  DEL2 by Definition 2.42.

– If q ∈ f2, then by Definition 2.42 of the minimal conservative strategy and minimal-
ity of f2 for DEL2, we have ∃c2 ∈ DEL2, ∃p2 ∈ Π : ∀r ≤ q.round : q(r) = c2(r, p2).
As DEL2 ⊆ DEL1  DEL2 by Definition 2.4, thus c2 ∈ DEL1  DEL2.
We found c and p showing that q is in the minimal conservative strategy for DEL1  
DEL2 by Definition 2.42.

– There are q1 ∈ f1 and q2 ∈ f2 such that q = q1  q2.
Because f1 and f2 are the minimal conservative strategies of their respective DELs,
then by Definition 2.42 ∃c1 ∈ DEL1, ∃p1 ∈ Π such that ∀r ≤ q.round : q1(r) =
c1(r, p1); and ∃c2 ∈ DEL2,∃p2 ∈ Π such that ∀r ≤ q.round : q2(r) = c2(r, p2).
By Definition 2.46 of prefix symmetry, the fact that DEL2 is prefix symmetric
implies that ∃c′2 ∈ DEL2 : ∀r ≤ q.round : c′2(r, p1) = c2(r, p2). Hence, ∀r ≤
q.round : q2(r) = c′2(r, p1).



2.5. NO FUTURE: CONSERVATIVE TO THE END 57

By taking c = c1[1, q1.round].c′2, we have c ∈ c1  c′2. Then ∀r ≤ q.round =
q1.round+ q2.round :

q(r) = q1(r)
= c1(r, p1)
= c(r, p1)

if r ≤ q1.round

q(r) = q2(r − q1.round)
= c′2(r − q1.round, p1)
= c(r, p1)

if r ∈ [q1.round+ 1, q1.round+ q2.round]


.

We found c and p showing that q is in the minimal conservative strategy for DEL1  
DEL2 by Definition 2.42.

Theorem 2.49 (Minimal Conservative Strategy for Repetition). Let DEL be a prefix sym-
metric delivered predicate, and f be its minimal conservative strategy. Then fω is the minimal
conservative strategy for DELω.

Proof. We only have to show that fω is equal to Definition 2.42.

• (⊇) Let q be a state such that ∃c ∈ DELω, ∃p ∈ Π such that ∀r ≤ q.round : q(r) =
c(r, p). By Definition 2.4 of operations for predicates, and specifically of repetition,
∃(ci)i ∈N∗ , ∃(ri)i∈N∗ such that r1 = 0 and ∀i ∈ N∗ : (ci ∈ DEL∧ri < ri+1∧c[ri+1, ri+1] =
ci[1, ri+1 − ri]).

Let k be the biggest integer such that rk ≤ q.round. We consider two cases.

– If rk = q.round, then c[1, r] = c1[1, r2 − r1].c2[1, r3 − r2]...ck−1[1, rk − rk−1]. We
take for i ∈ [1, k − 1] : qi the state such that qi.round = ri+1 − ri and ∀r > 0 : qi(r) = ci(r, p) if r ≤ qi.round
qi(r) = q(r + ∑

j∈[1,i−1]
qi.round) otherwise

.
First, f is valid for DEL by Lemma 2.41 and Definition 2.42. Then by validity of
f and by application of Lemma 2.41, for i ∈ [1, k − 1] we have qi ∈ f . We see that
∀r > 0 : q(r) = (q1  ...  qk−1)(r). Indeed, ∀r ∈ [ri + 1, ri+1] : q(r) = c(r, p) =
ci(r − ri, p) = qi(r − ri); and for r > q.round : q(r) = qk−1(r − ∑

j∈[1,k−1]
qi.round).

We conclude that q ∈ fω

– If q.round > rk, we can apply the same reasoning as in the previous case, the only
difference being c[1, r] = c1[1, r2 − r1].c2[1, r3 − r2]...ck−1[1, rk − rk−1].ck[1, r − rk].

• (⊆) Let q ∈ fω. By Definition 2.14 of operations for strategies, and specifically of
repetition, ∃q1, q2, ..., qk ∈ f : q = q1  q2  ... qk.

By Definition 2.42 of the minimal conservative strategy and by minimality of f for
DEL, ∃c1, c2, ..., ck ∈ DEL, ∃p1, p2, ..., pk ∈ Π : ∀i ∈ [1, k]qi = 〈qi.round, {〈r, j〉 | r ≤
qi.round ∧ j ∈ ci(r, pi)}.

By Definition 2.46 of prefix symmetry, the fact that DEL is prefix symmetric implies
that ∀i ∈ [2, k], ∃c′i ∈ DEL, ∀r ≤ qi.round : c′i(r, p1) = ci(r, pi).



58 CHAPTER 2. MAKING HEARD-OF PREDICATES

We take c = c1[1, q1.round].c′2[1, q2.round]...c′k−1[1, qk−1.round].c′k, thus c ∈ c1  c′2  
... c′k. Then ∀r ≤ q.round = ∑

i∈[1,k]
qi.round, if r ∈ [ ∑

i∈[1,i−1]
qi.round+1, ∑

i∈[1,i]
qi.round],

we have


q(r) = qi(r −

∑
i∈[1,i−1]

qi.round)

= ci(r −
∑

i∈[1,i−1]
qi.round, p1)

= c(r, p1)

.
We found c and p showing that q is in the minimal conservative strategy for DELω by
Definition 2.42.

2.5.3 Computing Heard-Of predicates of conservative strategies

The analogy with oblivious strategies breaks here: the heard-of predicate of conservative
strategies is hard to compute, as it depends in intricate ways on the delivered predicate itself.

Yet it is still possible to compute interesting information on this HO: upper bounds. These
are overapproximations of the actual HO, but they can serve for formal verification of LTL
properties. Indeed, the executions of an algorithm for the actual HO are contained in the
executions of the algorithm for any overapproximation of the HO, and LTL properties must
be true for all executions of the algorithm. So proving the property on an overapproximation
also proves it on the actual HO.

Theorem 2.50 (Upper Bounds on HO of Minimal Conservative Strategies). Let
DEL,DEL1,DEL2 be delivered predicates containing ctotal.
Let f cons, f cons1 , f cons2 be their respective minimal conservative strategies,
and fobliv, fobliv1 , fobliv2 be their respective minimal oblivious strategies. Then:

• HOfcons
1 ∪fcons

2
(DEL1 ∪DEL2) ⊆ HOProd(Nextsfobliv

1
∪Nextsfobliv

2
).

• HOfcons
1  fcons

2
(DEL1  DEL2) ⊆ HOProd(Nextsfobliv

1
∪Nextsfobliv

2
).

• HOfcons
1

⊗
fcons

2
(DEL1

⊗DEL2) ⊆ HOProd({n1 ∩ n2 | n1 ∈ Nextsfobliv
1

∧ n2 ∈
Nextsfobliv

2
}).

• HO(fcons)ω (DELω) ⊆ HOProd(Nextsfobliv ).

Proof. An oblivious strategy is a conservative strategy. Therefore, the minimal conservative
strategy always dominates the minimal oblivious strategy. Hence, we get an upper bound on
the heard-of predicate of the minimal conservative strategies by applying Theorem 2.36.

2.5.4 When Conservative is Enough

Some examples above, like DELcrash1,≥r (see Table 2.1), are not dominated by oblivious strategies.
But they are dominated by conservative strategies. This follows from a condition on delivered
predicates and its invariances by the operations, similar to the case of oblivious strategies.

Let’s start by showing that the condition implies the domination by a conservative strategy.

Definition 2.51 (Common Prefix Property). Let DEL be a Delivered Predicate. DEL satisfies
the common prefix property , ∀c ∈ DEL,∀p ∈ Π, ∀r > 0, ∃c′ ∈ DEL, ∀q ∈ Π, ∀r′ ≤ r :
c′(r′, q) = c(r′, p).



2.5. NO FUTURE: CONSERVATIVE TO THE END 59

The common prefix property, as its name suggests, works just like the common round
property but for a prefix. It ensures that for every prefix of a collection in the predicate, there
exists a collection where every process shares this prefix.

Theorem 2.52 (Sufficient Condition of Conservative Domination). Let DEL be a delivered
predicate satisfying the common prefix property Then, there is a conservative strategy which
dominates DEL.

Proof. The proof is exactly the same as for the oblivious case, except that the common prefix
property gives us a delivered collection where every one has the same exact prefix as the
blocked process in the canonical execution

Theorem 2.53 (Domination by Conservative for Operations). Let DEL,DEL1,DEL2 be de-
livered predicates with the common prefix property. Then DEL1 ∪ DEL2, DEL1

⊗DEL2,
DEL1  DEL2, DELω satisfy the common prefix property.

Proof. • Let c ∈ DEL1 ∪ DEL2. Thus c ∈ DEL1 or c ∈ DEL2 by Definition 2.4. We fix
c ∈ DEL1 (the other case is symmetric). Then for p ∈ Π and r > 0, we get a c′ ∈ DEL1.
satisfying the condition of Definition 2.51. And since DEL1 ⊆ DEL1 ∪ DEL2, we get
c′ ∈ DEL1 ∪DEL2.
We conclude that the common prefix property still holds for DEL1 ∪ DEL2 by Defini-
tion 2.51.

• Let c ∈ DEL1
⊗DEL2. Then ∃c1 ∈ DEL1, ∃c2 ∈ DEL2 : c = c1

⊗
c2. For p ∈ Π

and r > 0, our hypothesis on DEL1 and DEL2 ensures that there are c′1 ∈ DEL1
satisfying the condition of Definition 2.51 for c1 and c′2 ∈ DEL2 satisfying the condition
of Definition 2.51 for c2.
We argue that c′ = c′1

⊗
c′2 satisfies the condition of Definition 2.51 for c. Indeed,

∀r′ ≤ r, ∀q ∈ Π : c(r′, q) = c′1(r′, q)⊗ c′2(r′, q) = c1(r′, p)⊗ c2(r′, p) = c(r′, p).
We conclude that the condition of Definition 2.51 still holds for DEL1

⊗DEL2.

• Let c ∈ DEL1  DEL2. Since if c ∈ DEL2, the condition trivially holds by hypoth-
esis, we study the case where succession actually happens. Hence, ∃c1 ∈ DEL1,∃c2 ∈
DEL2,∃rchange > 0 : c = c1[1, rchange].c2. For p ∈ Π and r > 0, our hypothesis on DEL1
and DEL2 ensures that there are c′1 ∈ DEL1 satisfying the condition for c1 at r and
c′2 ∈ DEL2 satisfying the condition for c2 at r − rchange.
We argue that c′ = c′1[1, rchange].c′2 satisfies the condition for c. Indeed, ∀r′ ≤ r, ∀q ∈ Π,
we have: if r′ ≤ rchange : c′(r′, q) = c′1(r′, q) = c1(r′, p) = c(r′, p); and if r′ > rchange :
c′(r′, q) = c′2(r′ − rchange, q) = c2(r′ − rchange, p) = c(r′, p).
We conclude that the condition still holds for DEL1  DEL2.

• Let c ∈ DELω. Let (ci) and (ri) be the collections and indices defining c. Let p ∈ Π and
r > 0. Then let i the integer such that r ∈ [ri + 1, ri+1] By hypothesis on DEL, ∀i′ ≤ i

there are c′i′ ∈ DEL satisfying the condition of Definition 2.51 for ci′ and r − ri′ .
We argue that c′ = ∏

i>0
c′i[1, ri+1 − ri] satisfies the condition of Definition 2.51 for c.

Indeed, ∀r′ ≤ r, ∀q ∈ Π, we have: ∀i′ > 0 : r′ ∈ [ri′ + 1, ri′+1] =⇒ c′(r′, q) =
c′i′(r′ − ri′ , q) = ci′(r′ − ri′ , p) = c(r′, p).



60 CHAPTER 2. MAKING HEARD-OF PREDICATES

We conclude that condition of Definition 2.51 still holds for DELω.

Therefore, as long as the initial building blocks satisfy the common prefix property, so
does the result of the operations. Thus the latter is dominated by its minimal conservative
strategy – a strategy that can be computed easily from the previous results in this section.

2.6 The future is now

In the above, the dominating strategy was at most conservative: only the past and present
rounds were useful for generating heard-of collections. Nevertheless, messages from future
rounds serve in some cases.

Let’s go back to DELloss1 , the delivered predicate for at most one message loss presented
in Section 2.2.1. The minimal oblivious strategy for this predicate is fn−1. The minimal
conservative strategy is a similar one, except that when it received a message from p at round
r, it waits for all messages from p at previous rounds. But this does not change which messages
the strategy waits for in the current round: n − 1 messages, because one can always deliver
all the messages from the past, and then the loss might be a message from the current round.

If on the other hand the strategy considers messages from the next round, it can ensure
that at each round, at most one message among all processes is not delivered on time. The
strategy presented here waits for either all messages from the current round, or for all but one
messages from the current round and all but one message from the next round.

Definition 2.54 (Asymmetric Strategy). Let after : Q 7→ P(Π) such that ∀q ∈ Q : after(q) =
{k ∈ Π | 〈q.round+ 1, k〉 ∈ q.mes}.

Then fasym ,
{
q ∈ Q

∣∣∣∣∣ |obliv(q)| = |Π|
∨ (|after(q)| = |Π| − 1 ∧ |obliv(q)| = |Π| − 1}

}
.

Intuitively, this strategy is valid for DELloss1 because at each round and for each process,
only two cases exist:

• Either no message for this process at this round is lost, and it receives a message from
every process;

• Or one message for this process is lost at this round, and it only receives n − 1 mes-
sages. But all the other processes receive n messages (because none can be lost), thus
change round and send their message from the next round. Since the one loss already
happened, all these messages are delivered, and the original process eventually receives
n− 1 messages from the next round.

Lemma 2.55 (Validity of fasym). fasym is valid for DELloss1 .

Proof. We proceed by contradiction: Assume fasym is invalid for DELloss1 . Thus, there exists
t ∈ execsfasym(DELloss1 ) invalid. Hence there is a smallest round r where some process j has
infinitely often a state not in fasym. Let also c be a delivered collection of DELloss1 such that
t ∈ execs(c).

Minimality of r entails that every process reaches round r and thus sends its messages to
j, and c ∈ DELloss1 entails that at most one of these messages can be lost. Thus j eventually
receives n− 1 messages from round r.



2.6. THE FUTURE IS NOW 61

By hypothesis it doesn’t receive all n messages, or it could change round. Thus j receives
exactly n − 1 messages from round r, which means that the only loss allowed by DELloss1
happens at round r.

But for j to block, it must never receives n−1 messages from round r+1. Yet the only loss
is a message to j; thus every other process receives n messages at round r, changes round, and
sends its message to j without loss. Hence j eventually receives n − 1 messages from round
r + 1.

This contradicts the fact that j cannot change round at this point in t.

This strategy also ensures that at most one process per round receives only n−1 messages
on time – the others must receive all the messages. This vindicates the value of messages from
future rounds for some delivered predicates, such as the ones with asymmetry in them.

Theorem 2.56 (Heard-Of Characterization of fasym).
HOfasym(DELloss1 ) = HOcountrounds1 .

Proof. First, we show ⊆. Let ho ∈ HOfasym(DELloss1 ) and t ∈ execsfasym(DELloss1 ) an execu-
tion of fasym generating ho. By definition of the executions of fasym, processes change round
only when they received either n messages from the current round, or n−1 messages from the
current round (and n − 1 messages from the next one, but that is irrelevant to the heard-of
predicate). Moreover, t is valid by definition, as it generates ho.

Let’s now assume that at least one process j receives only n−1 messages on time for some
round r in ho. By definition of fasym and validity of t, we deduce that j also received n − 1
messages from round r + 1 while it was at round r. Hence every other process ended its own
round r before j; the only possibility is that they received n messages from round r, because
the alternatives require the reception of the message from j at round r + 1

We conclude that for each round, at most one process receive only n−1 messages on time,
which can be rewritten as ∀r ∈ N∗ : ∑

j∈Π
|Π \ ho(r, j)| ≤ 1.

Then, we show ⊇. Let ho a heard-of collection over Π such that ∀r ∈ N∗ : ∑
j∈Π
|Π\ho(r, j)| ≥

1. The difficulty here is that the canonical execution of ho fails to be an execution of fasym:
when only n − 1 messages from the current round are delivered to some process j, then the
corresponding nextj for this round will not be allowed by fasym.

One way to deal with this issue is to start from the canonical execution of ho and move
these incriminating nextj after the deliveries of n−1 messages from the next round, and before
the deliveries of messages from j in the next round.

In this way, every nextj will happen when either n messages have been received from the
current round, or n − 1 messages from the current round and n − 1 from the next one. We
conclude that ho ∈ HOfasym(DELloss1 ).

Does fasym dominate DELloss1 ? It would seem so, but proving it is harder than for fn−F
and DELcrashF . The reason is that the common round property of the latter allows the creation
of deadlocks where every process is blocked in the same local state, which forces any valid
strategy to accept this state. Whereas the whole reason the future serves in DELloss1 is
because the latter doesn’t have this property, and thus the local state of a process constrains
the possible local states of other process.

That being said, the conjecture seems reasonable.



62 CHAPTER 2. MAKING HEARD-OF PREDICATES

Conjecture 2.57 (Domination of fasym on DELloss1 ). fasym is a dominating strategy for
DELloss1 .

This example demonstrates two important points about strategies using the future: they
are necessary for finding dominating strategies of some delivered predicates, and their study
is not amenable to the same techniques as conservative and oblivious strategies.

2.7 Perspectives

2.7.1 Summary

In this chapter, I proposed a formalization of the heard-of predicate to use when studying
a given operational model through the Heard-Of model. This formalization comes with the
following methodology:

• Extract a delivered predicate from the informal model, either through direct analysis or
by building the predicate from simpler building blocks through operations.

• Compute a dominating strategy for this delivered predicate, either by direct analysis or
by combining dominating strategies for the simpler building blocks.

• Compute the heard-of predicate generated by this strategy on this delivered predicate.

This result captures the most constrained predicate which can be implemented on top of
the initial model. Thus if a round-based algorithm is proved correct on this predicate, its
correctness follows on the original model; and if no algorithm exists for a given problem on
this predicate, this entails that no round-based algorithm solves the problem on the original
model.

2.7.2 History of the research

The formalization in this chapter was first couched in terms of games. Processes aimed at
never blocking forever, while the adversarial environment tried to ensure such a deadlock.
Strategies, validity and domination were defined through games too, yet they worked in a
very similar way to the current version.

The issue with this approach was its complexity, as shown by a cursory look at the first
version of the paper [54] available in arXiv. Using games required an inordinate amount of
administrative formal manipulations, for proving simple and intuitive results.

The idea of using delivered predicates instead followed from the negative but useful reviews
given at DISC 2018, as well as from conversations with other researchers. This solution
removed most of the complexity, while keeping intact the core of the intuition.

Except this false start, the other big difficulty in this research was the constraining of
strategies and predicates to prove interesting results. At first we aimed at showing the existence
of a dominating strategy among all strategies for all predicates, but we were brought back to
reality by the issues of dealing with future messages. This resulted in constraints that focus
on messages from past and present, and conditions on predicates which make these messages
the only ones that matter.

https://arxiv.org/abs/1805.01657v1
https://arxiv.org/abs/1805.01657v1


2.7. PERSPECTIVES 63

2.7.3 Perspective

The obvious follow-up to this research is to tackle strategies which look into the future, and
predicates like DELloss1 that are useful for such strategies. Doing so will require completely
new proof techniques, as the one presented here implicitly rely on the ability to make only the
messages in the past and present rounds matter.

A more straightforward extension of this work would be the study of more delivered predi-
cates, both for having more building blocks to use with operations, and to derive more heard-of
predicates.





Chapter 3

Clashing Heard-Of Predicates with
Other Models

Sommaire
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Models and Previous Results . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.2 Focus on Strong Completeness . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.3 From HO[HO] to AMP [FD] . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3.4 From AMP [FD] to HO[HO] . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4 Extending to the All-Deciding Case . . . . . . . . . . . . . . . . . . . . 92
3.4.1 Full Monotony: Extending the Final Decisions . . . . . . . . . . . . . . . 92
3.4.2 Local Specifications: Agreeing on a Full Decision . . . . . . . . . . . . . . 93

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5.2 History of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.1 Introduction

3.1.1 Motivation

The most successful approach to abstract away distributed communication models is probably
the introduction of failure detectors by Chandra and Toueg [16]. These are oracles giving
information at each process on which other processes crashed. A notion of weakest failure
detector for a problem naturally arises, one which captures the information necessary to solve
a given problem in an asynchronous setting. Over the years, weakest failure detectors have
been found for consensus [17], registers [56], NBAC [57], and others.

Despite all these achievements, failure detectors show several flaws as abstraction of uncer-
tainty. Among them, the fact that the weakest failure detectors are highly dependent on the



66 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

underlying model: whether there are crashes, how many of them, if processes are anonymous
or not. . . Hence, we must study different failure detectors for different models, which brings
us back to square one: the existence of too many models. Another issue with failure detec-
tors stems from the formalism itself: depending on subtleties, there is either a weakest failure
detector for each problem [58], or there isn’t [59]. This comes from having a model with an
asynchronous component (the actual algorithm) and a time-dependent component (the failure
detector). As explored by Charron-Bost et al. [60], this sorely limits failure detectors. In
essence, implementing an algorithm that uses some failure detector "loses" the time informa-
tion. Hence the usual comparison relation between failure detector cannot have fundamental
mathematical properties, such as reflexivity, and taking the easy way out through the reflexive
closure still has problems. Namely, that the reflexive closure doesn’t ensure that a failure de-
tector is smaller by this order than another failure detector which allows strictly more histories
for each failure pattern. Losing timing information also limits the weakest failure detector for
reflexive and meaninful comparison relations to be time-insensitive (or stuttering).

All in all, these problems justify the search for another approach to distributed uncertainty.
Obviously, we go with the one used in this thesis: the Heard-Of model.

Now, the natural question for any user of failure detectors is the following: is anything
lost when going from failure detectors to the Heard-Of model? A lack of answer is partly to
blame for the lack of acceptance of the latter. It would seem that the Heard-Of model requires
more at first glance: all processes might decide (because there are no failures), rounds are
communication-closed and thus late messages are never used. It is not ridiculous to assume
that such constraints will reduce the ability to solve distributed problems.

This chapter delves into this question, and proves the equivalence of the Chandra-Toueg
hierarchy of failure detectors with specific heard-of predicates. That is, I prove that any
problem solvable in one is also solvable in the other. Along the way, I also explore various
notions of solvability in the Heard-Of model, and their consequences for the equivalence.

3.1.2 Overview

The contributions are the following:

• The definition of heard-of predicates equivalent to Chandra-Toueg failure detectors.
Among these, the predicate for the perfect failure detector was never used before.

• The proof of equivalence between these predicates and Chandra-Toueg failure detectors.

• The extension of equivalences above when all processes must decide in the Heard-Of
model, with sufficient conditions.

3.1.3 Related Work

There is already a line of research studying the link between asynchronous models augmented
by failure detectors, and round-based models with communication constraints. It started with
Afek and Gafni [32], who related asynchronous shared-memory and synchronous message-
passing with adversaries; and was followed by Raynal and Stainer [33], who studied simula-
tions between asynchronous message-passing models with failure detectors and synchronous
message-passing with adversaries.



3.2. MODELS AND PREVIOUS RESULTS 67

However, the model studied here is not synchronous – it is the Heard-Of model, which only
speaks about rounds, not how they are implemented. The thing is, fundamentally, neither
of the papers above talks about synchrony: their round-based model is synchronous, but
synchrony serves only for implementing rounds. Hence, it is not a necessity, just the natural
way for distributed computing researchers to think about rounds. Therefore, the results of Afek
and Gafni [32] and of Raynal and Stainer [33] both still work when replacing their synchronous
model by the Heard-Of model, and conversely our results translate to their synchronous model
too. Going with the Heard-Of model instead of the synchronous adversary one boils down to
Occam’s razor: it has less hypotheses for the same result.

Two other studies of the connection between rounds and failure detectors are the algorithm
transformations of Biely et al. [61] and the comparison of the perfect failure detector with a
synchronous model by Charron-Bost et al. [62].

Biely et al. [61] compare failure detectors with a partially synchronous model, but also a
predecessor of the Heard-Of model. The results they derive are about the ♦S failure detector,
and the predicate with an eventual source. Our derivation of the heard-of predicate for ♦S is
similar; but the less trivial failure detectors to find equivalent predicates for are P and ♦P,
which this paper only treats through partial synchrony, not round-based properties.

On the other hand, Charron-Bost et al. [62] focus less on the power of rounds than on
the power of synchrony. Their article indeed studies whether asynchrony augmented with a
perfect failure detector is equivalent in terms of solvability to synchrony. They answer in the
negative, by giving a problem which can only be solved if one process can know whether some
message was sent or not. This is always possible with synchrony, thanks to the communication
upper bound, but is sometimes impossible in asynchronous systems, even with the full power
of P.

Unexpectedly, this results applies to the Heard-Of model by putting it in the place of
the asynchronous system, not the synchronous one. This is because the difference in power
between synchronous and asynchronous models lies in being able to know if some message
will ever be delivered. A synchronous model can, while an asynchronous model with failure
detectors or the Heard-Of model can’t. Hence a purely synchronous model is more powerful
than the Heard-Of model.

That being said, the problem used in the paper is quite tailored to showing this separation,
and has no known practical application. It’s thus reasonable to conjecture that for all practical
problems of distributed computation, synchrony is equivalent to the right properties on rounds.

3.2 Models and Previous Results

3.2.1 Models

This work investigates the links between two general models of distributed computing: the
asynchronous model augmented with failure detectors, and the Heard-Of model. While the
latter was already defined in Chapter 1, the former still needs to be formalized.

This starts with the definition of failures and failure detectors. These come straight from
Chandra and Toueg [16], because their failure detectors are the ones studied here. For the
rest of the chapter, the set Π of processes is fixed.

A failure detector is a collection of local modules, one at each node, that give a list
of suspected process. The intuition is then that a failure pattern gives the set of crashed



68 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

Completeness
Accuracy Strong Weak Eventually Strong Eventually Weak

Strong Perfect Strong Eventually Perfect Eventually Strong
P S �P �S

Weak Weak Eventually Weak
Q W �Q �W

Figure 3.1: Failure Detectors Defined in [16]

processes at time t (represented by a natural number) of the execution; and a failure detector
takes a failure pattern and returns the set of history for the modules, that is of functions from
a process p and a time t to the set of processes suspected by p at t.

Hence, a failure detector constrains the possible behaviors of its modules at each process
depending on the failure pattern. Of course, the failure pattern is unknown to the algorithm;
the only information about it is captured by the output of the failure detectors, that is by the
histories.

Definition 3.1 (Failure pattern). A failure pattern F , a map N→ P(Π). For F a failure
pattern, crashed(F ) , ⋃

t∈N
F (t) and correct(F ) , Π \ crashed(F ).

Definition 3.2 (Failure detector). Let FD : (N→ P(Π))→ P((N×Π)→ P(Π)). Then FD
is a failure detector.

Table 3.1 provides a list of the failure detectors from Chandra and Toueg [16]; they will
be defined in the chapter when needed.

Another fundamental property of distributed computing models is atomicity: which se-
quences of events are considered to happen in a single step. Atomicity plays a big role in
limiting the uncertainty of distributed computations, by removing non-determinism and in-
terleaving. Our two models differ in what atomicity they assume.

To define atomicity, we need to start with computations and executions. A computation is
a partial order of events for each process, capturing the causal order between these events. An
execution of a computation is a linearization of the execution, a total order that is coherent
with the partial order. The following definition is standard, except for not putting receptions
at a process p in the total order of events at p. The reason here is that in one of the models, we
want to be able to reorder receptions, which is possible because we track when the receptions
are used in the computation steps and thus in the following events.

Definition 3.3 (Distributed Computation and Execution). Let Events be a set of events
annotated by processes in Π. The possible events are:

• emissions of a single message

• broadcast, emissions of one message for each process.

• receptions of a single message

• receptions of multiple messages

• computation steps annotated by a set of messages.



3.2. MODELS AND PREVIOUS RESULTS 69

Then a partial order c = (E,≺c) on a subset E of Events is a distributed computation
, It satisfies the following constraints.

• For each process p ∈ Π, if m is a message and the computation step compp has m
in its annotation, then there’s either a reception of m at p or a reception of multiple
messages (including m) at p in c. If we call this reception event receivep(m), then
receivep(m) ≺c compp.

• For each process p ∈ Π, the set of emissions (single emissions or broadcasts) and com-
putation steps forms a chain (a totally ordered subset).

• For each message m, if the reception of m at some q (either single reception or multiple
reception) is in c, then the emission of m at some p (either single emission or broadcast)
is in c.

• For each message m, if emissionp(m) is the emission event of m at the sender p
and receiveq(m) is the reception event of m at the receiver q, then emissionp(m) ≺c
receiveq(m)

• If there is a crash event for p, then this event is a maximal element for the set of events
for p.

An execution t of c , a linearization of c, where the time of each event is its position +
1 in t.

Definition 3.4 (Atomicity). Let c be a distributed computation, and let A be a subset of
events in c. Then c is atomic for A , ∃t an execution of c such that all events in A happen
one after the other, with no other event in between.

The asynchronous model studied is the wait-free model (asynchronous model with reliable
communication, and at most |Π| − 1 crashes) augmented with a failure detector. The events
on distributed computation for this model are reception, emission, and computation step; the
latter are annotated with the messages used in it, to deal with atomicity in the simulations,
and the output of the failure detector module. This model ensures atomicity at each process
for every set of receptions, the next computation step and the next emissions of messages.

Definition 3.5 (Asynchronous Message-Passing model augmented with FD). Let FD be a
failure detector. AMP [FD] is the asynchronous model with reliable communication, at most
n− 1 crashes, augmented with FD.

A distributed computation in AMP [FD] is a distributed computation (Def 3.3) containing
only single emissions, single receptions, crashes and computation steps annotated with a set
of messages and failure detector output. It satisfies the additional conditions:

• At most n− 1 crashes per computation.

• Every message sent to a non-crashed process is eventually received in the computation.

• Every process without a crash event has an infinite number of computation steps.

• There is a linearization of the computation, such that the outputs of failure detectors
are in a history of FD for the failure pattern defined by the crashes.



70 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

The executions of such a distributed computations are only those such that the outputs of
failure detectors are in a history of FD for the failure pattern defined by the crashes.

The succession (at a single process) of (possibly no, or several) receptions used by the next
computation step; the next computation step; the next (possibly no or several) emissions is
atomic in AMP [FD].

(End of Definition)

To harmonize the notations, let’s introduce an equivalent definition for the Heard-Of model.
Here the events are broadcasts, receptions of multiple messages (every message of the current
round according to the heard-of predicate), and computation steps for the change of rounds
(and update of state). As for atomicity, it ensures that every succession at a process of a
broadcast at round r, a reception at round r and a computation step at round r is atomic.

Definition 3.6 (Heard-Of model with predicate HO). Let HO be a heard-of predicate.
HO[HO] is the Heard-Of model with communication predicate HO.

A distributed computation in HO[HO] is a distributed computation (Def 3.3) containing
only broadcasts tagged by the round, receptions of multiple messages tagged by the round,
and computation steps tagged by the round and a set of messages. It satisfies the additional
conditions:

• For each process, the set of local events forms an infinite chain (a totally ordered subset)
built by a repetition of a broadcast, a reception and a communication step, forever.

• The sequence of all the receptions corresponds to a heard-of collection of HO.

For every computation c of HO[HO], c is atomic for the succession (at a single process) of
the broadcast for a round; the reception for a round; and the computation step for the round.

(End of Definition)

3.3 Simulations

The equivalence between the two models is proved using simulations from one to the other.
A simulation from model M1 to model M2 takes an algorithm on M1 and makes it run on
model M2, with an execution of the simulation on M2 being coherent with an execution of
the original algorithm on M1. This implies that the fundamental properties of the model are
maintained: atomicity and the failure detector/heard-of predicate properties.

The first step to defining simulations is through the notion of "solving a problem".

3.3.1 Specifications

Computability underlies the following equivalences. Thus the first step is to formalize the
notion of a problem (called a specification), and what it means to solve such a problem.

Because AMP [FD] contains crashes, not every process has to decide in solving a speci-
fication. The processes that don’t have to decide are the faulty processes, which correspond
with the crashed processes in AMP [FD] (There are subtleties for HO[HO]). The intuition
about specifications is that they’re defined for when no process crashes, and then the possible
vector of outputs when crashes do happen just replace the output of crashed processes by ⊥.

Taking a full output vector (or function from Π to the output values) and replacing some
values by ⊥ gives an output vector called a faulty extension of the initial output vector.



3.3. SIMULATIONS 71

Definition 3.7 (Faulty extension). Let out : Π → Vout be a function from processes to
outputs, and let F ⊆ Π be a set of faulty processes. The faulty extension of out to F is:

faultyF (out) : Π→ (Vout ∪ {⊥}) ,
{

∀p ∈ Π \ F : faultyF (out)(p) = out(p)
∧ ∀p ∈ F : faultyF (out)(p) = ⊥

Then a specification is defined by the possible complete output vectors for a given input
vector, and extended such that if all processes in F are faulty, then the possible output vectors
for a given input vector are all faulty extensions of possible complete output vectors for the
subsets of F .

Definition 3.8 (Specification). Let Vin and Vout be two sets of values.
spec : ((Π→ Vin)× P(Π))→ P(Π→ (Vout ∪ {⊥})) is a specification ,

∀in : Π→ Vin :
{

spec(in, ∅) ⊆ P(Π→ Vout)
∧ ∀F ⊆ Π, spec(in, F ) = {faultyF ′(f) | f ∈ spec(in, ∅) ∧ F ′ ⊆ F}

Now, specifications are solved by algorithms. What does an algorithm on AMP [FD] looks
like? The atomicity of the model guides us: each atomic step of such an algorithm includes
receptions (possibly of no messages or of several messages); a computation step; then the
emissions of multiple messages. Thus an algorithm on AMP [FD] gives the computation step
after reception and the set of messages to send.

Definition 3.9 (Algorithm on AMP [FD]). Let FD be a failure detector, let Q be the set of
local states with a write-once decision variable initalized at ⊥, and let MAp

content be the set of
possible message contents. Then Ap : P(Π)×P(Π×Π×MAp

content)×Q→ Q×P(Π×MAp

content)
is a local algorithm on AMP [FD]. A local algorithm Ap comes with an init function initAp

that takes an input value and gives the initial state of Ap for this input value. An algorithm
on AMP [FD] is a family of local algorithms on AMP [FD] indexed by Π, with the same
M

Ap

content for each local algorithm.

The first parameter of A is the output of the local failure detector module; the second
is the set of received messages from the start (where a message is a triplet (sender, receiver,
content)); and the last is the current state. Then A returns the next state and the messages
it sends next (where the sender is left implicit, since it’s the process running the algorithm).

Note that we could define the second parameter as the set of received messages since the
last step, but this information is never used in the actual algorithms. Using instead all the
messages received from the start also simplifies the proofs.

Algorithm 1 show the pseudo-code corresponding to the execution of such an algorithm in
AMP [FD]. It explicitly uses the failure detector output despite no access to time, because
the algorithm looks up the failure detector during the computation step, but is asynchronous
and so has no way to track time accurately.

Definition 3.10 (Distributed Computation of Algorithm on AMP [FD]). Let FD be a failure
detector and let A be an algorithm on AMP [FD] (with Ap the local algorithm at process p).
Then a distributed computation of A on AMP [FD] , a distributed computation of AMP [FD]
such that:

• Each computation step at p is annotated by a state: the state resulting from the applica-
tion of Ap to the local state annotating the previous local computation step (or an intial
state for some input value, if it’s the first computation step of p), the set of received
messages and the failure detector output annotating the computation step.



72 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

/* On reception of one or several messages */
Apply Ap to fd (the output of failure detector), the received messages and the
current state to get the next state and messages to send;
Send messages from last application of Ap;

Algorithm 1: Pseudo-code for an execution of local algorithm Ap for process p on
AMP [FD]

• The messages annotating each computation step at p are the messages used in the
computation given by applying Ap to: the local state, the set of received messages and
the failure detector output.

• The emissions after a computation step at p are given by the application of Ap to the
state of the process at the computation step, the received messages at this point and the
failure detector output annotating the computation step.

(End of Definition)

Now, specifications constrain the output of such algorithms. Although the intuition of the
output of an algorithm is simple, it becomes slightly more difficult for distributed systems –
that is, when to stop the algorithm is not trivial. We sidestep this difficulty by defining the
output of an algorithm as the vector of decision that never changes in the rest of the execution.
Since decision is write-once and the number of processes is finite, such a vector always exists
for an execution.

Definition 3.11 (Output of Algorithm on AMP [FD]). Let A be an algorithm on AMP [FD].
Then the output out of a computation c of A on AMP [FD] with initial states qpinit for process p
, the vector of decision variable indexed by Π such that for each p ∈ Π, there is a computation
step after which out[p] = decisionp, and no following computation step at p ever changes this.

Definition 3.12 (Solving a specification on AMP [FD]). Let spec be a specification, and
A be an algorithm on AMP [FD]. A solves spec on AMP [FD] , ∀In : Π → Vin,∀c a
computation of A on AMP [FD] where the initial state of each p is initAp(In(p)), if out is the
output of c, then out ∈ spec({(p, In(p)) | p ∈ Π}, crashed(c)), where crashed(c) is the set of
processes with a crash event in c.

Ordinarily in distributed computing, the only processes that don’t need to decide are the
crashed ones. Since there is no crash in the Heard-Of model, it seems natural to require that
every process decides according to the specification. Yet this is not the definition of solving
used by Raynal and Stainer [33]. Instead, they require the decision only for processes that
form a set where all the members of the set hear each other infinitely often, all the other
processes hear the processes of this set infinitely often, and no process outside of this set is
heard infinitely often by a member of the set.

Intuitively, this set captures the processes that will be able to propagate their values, and
to agree with each other. This is the definition of solving a specification that is used for
the simulations in this section. It is justified, because weakly correct processes capture the
processes that would have crashed in a classical asynchronous model. Then their decision is
not really necessary, even in the Heard-Of model.



3.3. SIMULATIONS 73

/* For each round r ≥ 1 */
Send messages from last application of Ap (or initial application for r = 1);
Receive messages from the Heard-Of oracle (from processes in the Heard-Of set);
Apply Ap to r, the received messages and the current state to get the next state and
messages to send;

Algorithm 2: Pseudo-code for an execution of local algorithm Ap for process p on
HO[HO]

Definition 3.13 (Eventual neighbors and strongly correct processes). Let h be a heard-of col-
lection, and let i, j ∈ Π. i is eventual neighbor of j, i ∞ j , ∀r > 0,∃k ≥ 0,∃λ0, λ1, ..., λk ∈
Π : λ0 = i ∧ λk = j ∧ ∀l ∈ [1, k] : λl−1 ∈ h(r + l, λl) ∨ λl = λl−1.

i and j are mutual eventual neighbors, i! j , i
∞
 j ∧ j ∞ i.

Finally, the strongly correct processes of h, SC(h) , the subset of Π such that{
∀i, j ∈ SC(h) : i! j

∧ ∀k /∈ SC(h) : (∃i ∈ SC(h) : i ∞ k ∧ ∀j ∈ SC(h) : k 6∞ j)
Every process that is not strongly correct is weakly correct.

To give an intuition, consider a source: a process that is heard by everyone at each round.
Then an eventual source is a process that becomes a source after a certain round. Such an
eventual source is strongly correct. This proves important in the proofs, since all predicates
in this chapter ensure an eventual source.

Lemma 3.14 (Eventual source is strongly correct). Let h be a heard-of collection, and s ∈ Π
be a process. Then (∃r > 0,∀r′ ≥ r, ∀p ∈ Π : s ∈ h(r′, p)) =⇒ s ∈ SC(h).

Proof. This is equivalent to saying that SC(h) = {p | p ∈ Π ∧ p! s}. Let’s take k ∈ Π \ {p |
p ∈ Π ∧ p! s}. We want to prove that s ∞ k ∧ k 6∞ s. The first follows by definition of s,
and the second by the fact that k 6! s – which would be the case if both s ∞ k and k ∞ s.

We conclude that s is a strongly correct process of h.

Just like the atomicity of AMP [FD] directed us towards the definition of an algorithm on
this model, the atomicity of HO[HO] implies the form of its algorithms: a function that takes
the current round number, the set of received messages (for the current round) and the local
state, and which returns the next state and the set of messages it sends next.

Definition 3.15 (Algorithm on HO[HO]). Let HO be a failure detector, let Q be the set of
local states with a write-once decision variable initalized at ⊥, and let MAp

content be the set of
possible message contents used by Ap. Then Ap : N×P(Π×Π×MAp

content)×Q→ (Q×MAp

content)
is a local algorithm on HO[HO]. A local algorithm Ap comes with an init function initAp

that takes an input value and gives the initial state of Ap for this input value. An algorithm
on HO[HO] is a family of local algorithms on HO[HO] indexed by Π, with the same MAp

content

for each local algorithm.

Note that the round is in N instead of N∗ to deal with the initial step of sending messages
for round 1.

Algorithm 2 shows the pseudo-code corresponding to the execution of such an algorithm
in the Heard-Of model.



74 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

Definition 3.16 (Distributed Computation of Algorithm on HO[HO]). Let HO be a failure
detector and let A be an algorithm on HO[HO] (with Ap the local algorithm at process p).
Then a distributed computation of A on HO[HO] , a distributed computation of HO[HO]
such that:

• The messages annotating the computation step of p at round r are those received in the
reception of p at round r.

• Each computation step at p is annotated by a state: the state resulting from the appli-
cation of Ap to the local state annotating the previous local computation step (or some
initial state for a choice of input if its the first), the set of received messages and the
round number annotating the state.

• The broadcast after a computation step at p is given by the application of Ap to the
state of the process at the computation step, the received messages at this point and the
round annotating the computation step.

(End of Definition)

The output is defined analogously to the AMD[FD] case. And here too, A is an algorithm
for a single process, but every process is assumed to share the same algorithm.

Definition 3.17 (Output of Computation of Algorithm on HO[HO]). Let A be an algorithm
on HO[HO]. Then the output out of a computation c of A on HO[HO] with initial states
qpinit for process p , the vector of decision variable indexed by Π such that for each p ∈ Π,
there is a computation step after which out[p] = decisionp, and no following computation step
at p ever changes this.

Definition 3.18 (Solving a specification on HO[HO]). Let spec be a specification, and A be
an algorithm on HO[HO]. A solves spec on HO[HO] , ∀In : Π→ Vin,∀c a computation of
A on HO[HO] where the initial state of each p is initAp(In(p)), if out is the output of c, then
out ∈ spec({(p, In(p)) | p ∈ Π},Π \ SC(ho)),

A common criticism of the Heard-Of model lies in it forcing every process to decide,
even if they would have crashed in the corresponding asynchronous model. Intuitively, this
seems harder to do than only having non-crashed processes deciding. Limiting the decision
to strongly correct processes can be criticized as sidestepping this fundamental issue. This
is dealt with in Section 3.4, which shows that there are ways to ensure that every process
decides.

For the rest of this section, solving a problem in the Heard-Of model is defined as above,
forcing decision only for strongly correct processes.

3.3.2 Focus on Strong Completeness

In the rest of this chapter, all failure detectors considered satisfy strong completeness.

Definition 3.19 (Strong completeness (Chandra-Toueg)). Let FD be a failure detector.
FD satisfies strong completeness , ∀F a failure pattern, ∀H ∈ FD(F ),∃t ∈ N,∀p ∈
crashed(F ),∀q ∈ correct(F ), ∀t′ ≥ t : p ∈ H(q, t′).



3.3. SIMULATIONS 75

This property ensures that a process can wait for messages from unsuspected processes:
either the message will arrive, or the process will end up suspected. The alternative is weak
completeness, which only requires that for each crashed process, at least one correct process
eventually detects the crash.

Definition 3.20 (Weak completeness (Chandra-Toueg)). Let FD be a failure detector.
FD satisfies weak completeness , ∀F a failure pattern, ∀H ∈ FD(F ),∃t ∈ N, ∀p ∈
crashed(F ),∃q ∈ correct(F ), ∀t′ ≥ t : p ∈ H(q, t′).

Focusing on strong completeness might seem very limiting. Yet this is hardly the first time
such a focus was acted: Chandra and Toueg themselves [16] focus their paper on them. The
reason being that weak completeness can be used to implement strong completeness: every
process regularly sends its set of suspected processes to all others. And when a process receives
such a set from say process p, the receiver process adds the set to its own set of suspected
processes and removes p from it.

I don’t include this implementation itself in the simulations because it doesn’t work in
the Heard-Of model: only trivial predicates (like waiting for at least one message) can be
implemented in a communication-closed way on top of a weakly complete failure detector.
This is because with weak completeness, the local detector offers no guarantee that a given
correct process p will suspect any crashed process – only that some process will suspect each
one. And because the Heard-Of model ensures communication-closedness, there is no way to
keep exchanging the output of failure detecors until they get strongly complete, as is done
in the usual simulation from weak completeness to strong completeness. Strong completeness
thus needs to be implemented before simulating the Heard-Of model.

3.3.3 From HO[HO] to AMP [FD]

The point of this section is to take an algorithm A on HO[HO] and build from it an algorithm
B on AMP [FD]. This is done through a simulation of HO[HO] running on AMP [FD]. B is
then the result of plugging A into this simulation.

This simulation is given in algorithm 3: processes simulate rounds by broadcasting a
message, waiting for all the messages of this round from unsuspected processes, and using the
call to A to compute the next state and messages to send. Applying this simulation to the
failure detectors of interest gives rise to heard-of predicates.

Let’s start with the Perfect Failure detector P. In addition to strong completeness (satisfied
by every failure detector in this section), P satisfies strong accuracy.

Definition 3.21 (Strong accuracy (Chandra-Toueg)). Let FD be a failure detector. FD
satisfies strong accuracy , ∀F a failure pattern, ∀H ∈ FD(F ),∀t ∈ N, ∀p, q ∈ Π\F (t) : p /∈
H(q, t).

The heard-of predicate it simulates is defined as follows.

Definition 3.22 (Perfect Heard-Of Predicate). HOperfect , {h a HO collection | ∀r > 0, ∀p ∈
Π : (h(r, p) 6= ∅) ∧ (∀r′ ≥ r + 2 : h(r′, p) ⊆ ⋂

q∈Π
h(r, q))}

This predicate says: if p is not heard by every other process at round r, then it will never
be heard by anyone again from round r + 2 onwards. The +2 additive factor in the Perfect



76 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

/* Local state for process i */
〈r, sim_state〉
/* Intial state of process i in Bi from initial state qiinit for Ai */
〈0, qiinit〉
/* Local algorithm Bi on AMP [FD] */
Bi(fd, received, 〈r, sim_state〉) ={

(〈r + 1, fst(simA)〉, {(i, j, (r + 1,m)) | (i, j,m) ∈ snd(simA)}) if cond_fd
(〈r, sim_state〉, ∅) otherwise

where
• cond_fd , ∀p ∈ Π \ fd,∃m ∈MAi

content : (p, i, (r,m)) ∈ received.

• simA , Ai(r, {(p, i,m) | (p, i, (r,m)) ∈ received}, sim_state).

Algorithm 3: Algorithm B on AMP [FD] simulating an algorithm A on HO[HO]

predicate might be confusing; why 2, and not 1 or 3? What matters here is that perfect failure
detectors force correct processes to be at most one round apart, because they all wait for each
other. Hence, a process p (at round r) detecting the crash of a process q means that q crashes
when it was either at round r−1, r or r+1. The additive factor of 2 deals with the case where
the process p detects at round r the crash of the process q itself at round r+1. Because q sent
its messages for round r, and possibly also its messages for round r + 1, there is uncertainty
on which messages p will receive from q until round r + 2.

We can now prove the simulation from AMP [FD] to HO[HO].

Theorem 3.23 (Simulation of HO[HOperfect] on AMP [P]). Let Spec be a specification. If
there is an algorithm A solving Spec on HO[HOperfect], then there is an algorithm B solving
Spec on AMP [P].

Proof. Let A be an algorithm solving Spec onHO[HOperfect]. The algorithm B is Algorithm 3,
using A. We prove that B solves Spec on AMP [P].

Let c be a computation of B on AMP [P], with inputs In and faulty processes crashed(c).
The point is to build a computation c′ of A on HO[HOperfect] which respects the partial order
of c. It must also be a computation of HO[HOperfect], and thus must satisfy the conditions
from Definition 3.6: being a distributed computation according to Definition 3.3, that for
each process the set of events forms a infinite chain, that the messages provided to each
simulated process at each round in c′ form a collection of HOperfect, and the atomicity of
HO[HOperfect]. Lastly, c′ needs to be a computation of A on HO[HOperfect], which means
satisfying the conditions from Definition 3.16.

Then the output of c for B on AMP [P] will be the output of c′ for A running on
HO[HOperfect], and thus that B solves Spec by definition of A.

Let’s start by defining c′. First, let’s define, for each event of c, to what it corresponds in
c′: no event, one event or multiple events.

• The receptions of messages used by a computation step at p are transformed into the
reception event for the corresponding round at p, tagged with the round in the message.

• The receptions of messages never used in any computation step at p are not present in
c′.



3.3. SIMULATIONS 77

• The emissions of messages are transformed into the broadcast event for the corresponding
round.

• The computation steps at p where no state change happens are removed.

• The computation steps at p where the state changes correspond to changes of rounds
and thus are sent to the corresponding computation step at p in c′. They are tagged
with the set of messages used in the call to A, and by the value of sim_state after the
call to A.

• The crashes correspond to a set of broadcast, receptions and computation steps for all
rounds greater than the one at which the process crashes. The receptions contain every
message sent by non-crashed processes in c for round r.
This amounts to replacing crashed process by processes that receive every message from
non-crashed processes on time, but whose messages are never received on time (because
the process is not in the heard-of sets after this round). This ensures the implementation
of the right heard-of predicate, while having no influence on the algorithm because these
silent processes never send another message that is received.

We only defined the set of events of c′; now let’s define its partial order. The partial order
of c′ is defined by taking the reflexive closure of the order ≤c′ defined by: ∀e1, e2 ∈ c′ : e1 ≤c′ e2
if and only if:

• e1 is broadcastrp(m) and e2 is receiverq(M), where m ∈M .

• e1 is broadcastrp(m) and e2 is receiverp(M).

• e1 is receiverp(M) and e2 is comprp.

• e1 is comprp and e2 is broadcastr+1
p (m).

Now if two events e1 and e2 in c are such that e1 ≺c e2 in c, and these events have the
corresponding events e′1 and e′2 in c′, then e′1 ≺c′ e′2. We can see this through a case-by-case
analysis.

• if e1 and e2 happen at the same process p then there are multiple cases. We don’t deal
with the case where the events are a reception at p and an emission at p, as such events
are either not ordered in c or follow from the transitivity. Same for the case where e1 is
a computation step at p and e2 is a reception at p; or any case where e1 is a crash, as
this is impossible by definition of c.

– if e1 is the emission of a message at p and e2 is any computation step at p greater
than e1, then e′1 is a broadcast at a round smaller than the round of the computation
step e′2, and thus e′1 ≺c′ e′2.

– if e1 is a computation step at p and e2 is any emission at p greater than e1, then
e′1 is a computation step at a round smaller than the round of the broadcast step
e′2, and thus e′1 ≺c′ e′2.

– if e1 is the reception at p of a message used in a computation step and e2 is this
computation step at p, then e′1 is the reception for the corresponding round and e′2
is the computation step for this round. And by the definition of c′ above, e′1 ≺c′ e′2.



78 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

– if e1 is any event at p and e2 is the crash of process p, then for every event e′2 in
the set of events corresponding to the crash, it is either a broadcast, reception or
computation step of a round greater than the round where e′1 happens, and thus
e′1 ≺c′ e′2 by definition of c′.

• if e1 and e2 happen at different processes, then there is a chain in c from e1 to e2. For the
parts of the chain that are at some process, the discussion above shows that the order
is maintained. The only case of events in c ordered at different process with nothing in
between is the case where e1 is an emission of a message used in some computation step
and e2 is the reception of this message. Then e′1 is the broadcast where this message
is sent and e′2 the reception containing this message. And by the definition of c′ above,
e′1 ≺c′ e′2.

Then, one has to show that c′ satisfies the properties of a computation of HO[HOperfect]
from Definition 3.6.

• (Distributed Computation) A distributed computation of HO[HOperfect] is also a
distributed computation according to Definition 3.3.

– (Reception of message used in computation event) By definition of c′, the
message used in a computation event are exactly those used by the correponding
computation event in c (or the messages from all non-crashed processes for crashed
processes). Because c is a distributed computation, these messages were received
in c before the computation event according to ≺c. And by definition of c′, the
reception happens at the reception for the round of the computation event.

– (Local emissions and computation steps form a chain) For each process
p ∈ Π and every round r, broadcastrp ≺c′ comprp by transitivity, and comprp ≺c′
broadcastr+1

p . Thus the broadcasts and computation steps at p do form a chain.
– (If reception, then emission). Every reception of c′ corresponds to either a

reception in c or a crashed event in c. In the first case, the fact that c is a distributed
computation and the definition of c′ ensures that the emission happens in c and
also in c′. In the second case, by definition of the receptions corresponding to
crashes, the messages received where sent by some non-crashed process, and thus
the emission is in c′.

– (Emission smaller than reception) This follows from the definition of ≺c′ .

• (Local events form an infinite chain) The question here is whether each process has
an infinite number of computation steps, that is of changes of round; the specific form
of the chain (broadcast, receive, computation step) follows from the definition of ≺c′ .
For crashed processes, the crash is replaced by an infinite chain of events, which gives
us the property. So we focus on correct processes.
Let p ∈ Π \ crashed(c) be a correct process of c. By definition, p never crashes, and
by the strong completeness of P, the failure detector at p eventually detects all crashes.
Thus, for each round r and each process q, if p waits long enough, it will either receive
the message of q for round r, or q will be suspected by the failure detector at p, because
it crashed. Thus p always eventually hear from all non-suspected processes in Π. Then



3.3. SIMULATIONS 79

by Definition 3.5 of a computation of AMP [P], there will be a another computation step
at p. At that point, cond_fd will be true, and thus calling B will increment the round
number and and update the state according to A. Since this happen eventually for each
round, p will have an infinite number of computation steps where it updates its state in
c, and thus an infinite number of computation steps in c′.

• (Messages heard at each round form a collection of HOperfect) We extract a
heard-of collection h from c′, since every process has an infinite number of rounds. Based
on how receptions were defined for crashed process, h is built with the actual received
ones for non-crashed processes and the ones defined above for crashed processes. We
now show that h ∈ HOperfect.
First, because c is an execution of AMP [P], there are at most n−1 crashes, and thus at
least one process is correct. It can never be suspected by P thanks to strong accuracy,
and thus every non-crashed process waits for its message at each round. Since all the
messages of the correct processes are sent, crashed processes also receive it on time
(following the explanation above). So, ∀r > 0, ∀p ∈ Π : h(r, p) 6= ∅.
Now we have to show that ∀r > 0, ∀p ∈ Π : ∀r′ ≥ r + 2 : h(r′, p) ⊆ ⋂

q∈Π
h(r, q).

We do so by contradiction. Assume ∃r > 0 and ∃r′ ≥ r + 2 two rounds, and ∃p ∈ Π
a process which has not crashed yet at round r′ such that h(r′, p) 6⊆ ⋂

q∈Π
h(r, q). Thus,

∃k ∈ Π such that k ∈ h(r′, p) ∧ k /∈ ⋂
q∈Π

h(r, q). This also means ∃pK ∈ Π : k /∈ h(r, pK).

Here, pK has not crashed yet at round r since k ∈ h(r′, p) implies that k has not crashed
at round r < r′, and thus that it has sent its messages to every process. If pK had
crashed, then by the discussion above, it would have received the message from k before
going to the next round. Since it is not the case, pK has not crashed yet at round r.
Then k /∈ h(r, pK) means that pK did not wait for the message from k at round r; on
the other hand, p did receive the message from k at round r′ > r. By Definition of B,
this means that the failure detector of pK suspected k at round r. Which, by strong
accuracy of P, means that k crashed when pK was still at round r.
Now, at which round was k, at most, when this crash happened? Recall that pK was
not crashed at round r, that is when k crashed. Which means that by strong accuracy,
the failure detector at k never suspected pK . Then k could not have gone beyond round
r+1 < r′, because at round r+1, k had to wait the message of the non-crashed (and thus
non-suspected) pK , and pK was still at round r, and thus had not sent yet its messages
for round r + 1.
Then k never reached round r′ before crashing, and thus never sent its message to p for
this round. Which contradicts k ∈ h(r′, p), and thus the hypothesis.
So, the messages received during the execution of B on AMP [P] form a collection of
HOperfect.

• (Atomicity) By Definition 3.6, the atomicity of c′ on HO[HOperfect] depends on the
broadcast broadcastrp, reception receiverp and computation step comprp from the same
round r. So we’re looking for a linearization t′ of c′ such that for every process p and
every round r, there are no other events in t′ between broadcastrp and receiverp, or between



80 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

receiverp and comprp. Showing that such a linearization exists is equivalent to showing
that no other event e at p exists such that broadcastrp ≺c′ e ≺c′ receiverp ∨ receiverp ≺c′
e ≺c′ comprp.
We prove that no event satisfies the first inequality – the reasoning is analoguous for the
second inequality.
Let e′ be any event at p in c′ distinct from broadcastrp ≺c′ and receiverp. By definition
of c′, e′ is tagged with a round number r′.

– If r′ < r, then e′ ≺c′ broadcastrp by definition of c′.
– If r′ ≥ r, then receivedrp ≺c′ e′. by definition of c′.

Either way, e′ is not between broadcastrp ≺c′ and receiverp. Hence such event doesn’t
exist in c′.

Lastly, we have to show that c′ is a computation of A on HO[HOperfect].

• (Annotation of computation steps by messages from round) By definition of c′,
the messages annotating the computation step of p at round r are the messages received
by p in its reception for round r.

• (Annotation of computation step by state) By definition of c′, each computation
step at p is annotated by the simulated state resulting from the application of Ap to the
current round number, the set of received messages, and the previous simulated state.

• (Message to send) By definition of c′, the broadcast of p at round r sends the message
given by the application of Ap to r − 1, the set of received messages at p from round
r − 1 and the simulated state of p before the computation step for round r − 1 at p.

We conclude that B solves Spec.

Now, there are weakest failure detectors than the perfect one. The classical way to weaken
P is to weaken accuracy.

Definition 3.24 (Weak accuracy (Chandra-Toueg)). Let FD be a failure detector. FD
satisfies weak accuracy , ∀F a failure pattern, ∀H ∈ FD(F ), ∃p ∈ correct(F ),∀t ∈ N, ∀q ∈
Π \ F (t), p /∈ H(q, t).

Here is the corresponding heard-of predicate.

Definition 3.25 (Strong Heard-Of Predicate). HOstrong , {h a HO collection |
( ⋂
r>0,p∈Π

h(r, p)) 6= ∅}

Theorem 3.26 (Simulation of HO[HOstrong] on AMP [S]). Let Spec be a specification. If ∃A
an algorithm solving Spec on HO[HOstrong], then ∃B an algorithm solving Spec on AMP [S].

Proof. The mapping from a computation of B (the Algorithm 3 using A) on AMP [S] to a
computation of A on HO[HOstrong] is defined in the same way as in the proof of Theorem 3.23.

The only parts of this proof that depend on the failure detector is the proof of progress
for correct process (but it depends on strong completeness, which S also ensures), and the
collection of received messages. Here, the reasoning is simpler: by weak accuracy, ∃p ∈ Π such



3.3. SIMULATIONS 81

that p is a correct process that is never suspected. It always sends its messages at each round,
and because it is never suspected, all the processes wait for it.

Hence, p ∈ ( ⋂
r>0,p∈Π

h(r, p)), and thus the generated collection is in HOstrong.

Finally, weaker failure detectors satisfy eventual variations of strong and weak accuracy.

Definition 3.27 (Eventually strong accuracy (Chandra-Toueg)). Let FD be a failure detec-
tor. FD satisfies eventually strong accuracy , ∀F a failure pattern, ∀H ∈ FD(F ), ∃t ∈
N,∀t′ ≥ t,∀p, q ∈ Π \ F (t′), p /∈ H(q, t′).

Definition 3.28 (Eventually weak accuracy (Chandra-Toueg)). Let FD be a failure detec-
tor. FD satisfies eventually weak accuracy , ∀F a failure pattern, ∀H ∈ FD(F ),∃p ∈
correct(F )∃t ∈ N, ∀t′ ≥ t,∀q ∈ Π \ F (t′), p /∈ H(q, t′).

Definition 3.29 (Eventually Perfect Heard-Of Predicate).
HO♦perfect , {h a HO collection | ∃r♦, ∀r > r♦,∀p ∈ Π : (h(r, p) 6= ∅)∧(∀r′ ≥ r+2 : h(r′, p) ⊆⋂
q∈Π

ho(r, q))}

Definition 3.30 (Eventually Strong Heard-Of Predicate).
HO♦strong , {h a HO collection | ∃r♦ > 0 : ( ⋂

r>r♦,p∈Π
h(r, p)) 6= ∅}

Theorem 3.31 (Simulation of HO[HO♦perfect] on AMP [♦P]). Let Spec be a specification.
If ∃A an algorithm solving Spec on HO[HO♦perfect], then ∃B an algorithm solving Spec on
AMP [♦P].

Proof. This follows from Theorem 3.23, because HO♦perfect becomes HOperfect after some
point. Before, no guarantees are required; after, the same guarantees as forHOperfect hold.

Theorem 3.32 (Simulation of HO[HO♦strong] on AMP [♦S]). Let Spec be a specification.
If ∃A an algorithm solving Spec on HO[HO♦strong], then ∃B an algorithm solving Spec on
AMP [♦S].

Proof. This follows from Theorem 3.26, becauseHO♦strong becomesHOstrong after some point.
Before, no guarantees are required; after, the same guarantees as for HOstrong hold.

3.3.4 From AMP [FD] to HO[HO]

This simulation (Algorithm 4) is more involved: each process i sends control messages with
the message its simulated process attempts to send. If all the processes that i hears from know
of these messages, then i runs a simulation step.

Remark 3.33 (Explanation of Algorithm 4). The main difference between Algorithm 3 and
Algorithm 4 lies in the nature of messages for the simulated processes: in Algorithm 3, every
message given to the call to A is a message received, whereas in Algorithm 4 the messages
given to the call to A were sent inside control messages.

So in Algorithm 4, messages sent and received by the algorithm are control messages that
contains information about which message each simulated process wants to send. And once
enough guarantees are satisfied, these implied messages are delivered to the simulated process.



82 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

/* Local state for process i */
〈sim_state, fd, sim_received, view, to_send〉
/* Intial state of process i in Bi from initial state qiinit for Ai */
〈qiinit, ∅, ∅, ∅, ∅〉
/* Local algorithm Bi on HO[HO] */
Bi(r, received, 〈sim_state, fd, sim_received, view, to_send〉) =

• The new state new_state given by

– new_state.sim_state =
{
fst(sim_A) if cond_fd
sim_state otherwise

– new_state.fd = new_fd
– new_state.sim_received =

sim_received
∪{(j, i,m) | (j, i, viewj) ∈ received ∧ (j, i,m) ∈ viewj}

if cond_fd

sim_received otherwise

– new_state.view =


view ∪ (⋃(p,i,viewp)∈received viewp)
∪snd(simA) ∪ {(i, i, ”roundr”)} if cond_fd

view ∪ (⋃(p,i,viewp)∈received viewp) otherwise

– new_state.to_send =
{
snd(simA) ∪ {(i, i, ”roundr”)} if cond_fd
to_send otherwise

• The message to broadcast is new_state.view.

where

• cond_fd , ∀p ∈ (Π \ new_fd) : to_send ⊆ viewp

• new_fd , Π \ ({p ∈ Π | ∃(p, i, viewp) ∈ received} ∪ {i})

• new_sim_received = sim_received ∪ {(j, i,m) | (j, i, viewj) ∈ received ∧ (j, i,m) ∈
viewj}

• simA , Ai(new_fd, new_sim_received, sim_state)

Algorithm 4: Algorithm B on HO[HO] simulating an algorithm A on AMP [FD]



3.3. SIMULATIONS 83

Now let’s go over the meaning of the variables. fd is the simulated failure detector;
sim_state is the state of the simulated process; sim_received is the set of messages received
in simulation by the simulated process; view is the set of all the messages known by the
process; to_send is the set of messages in the last computation step by the simulated process;

The algorithm initializes the variables in the obvious way, and then at each round, process
i broadcasts its view. Messages are of the form (sender, receiver, content). Once process i
has received the messages for the current round (given by the HO oracle), it updates view by
taking the union of received views (by construction, the content of a message from a process
j is the view from j, viewj); it also updates fd to the set of process from whom a message
was not received.

If all the heard processes have to_send in their view, process i runs a step of A. To do so,
process i updates sim_received by adding all the messages to itself contained in the received
views. The simulation step gives the next simulated state, and the new set of messages to
send. Notice that process i always adds a new message from itself to itself to to_send; this
ensures that a process that progresses was actually heard by the other processes, even in the
case that its to_send was empty.

One additional subtlety here is that Algorithm 4 does not work for simulating AMP [P]
from HO[HOperfect]. Indeed, it might generate executions where crashes are detected a bit in
advance, and that invalidates strong accuracy.

Let’s thus turn to the weaker failure detectors first. Then a variation of Algorithm 4 will
take care of P.

Theorem 3.34 (Simulation of AMP [S] on HO[HOstrong]). Let Spec be a specification. If ∃A
an algorithm solving Spec on AMP [S], then ∃B an algorithm solving Spec on HO[HOstrong].

Proof. Let A be an algorithm solving Spec on AMP [S]. The algorithm B is Algorithm 4
applied to A. We need to show that it indeed solves Spec on HO[HOstrong]

Let c be a computation of B on HO[HOstrong], with inputs In and corresponding heard-of
collection ho ∈ HOstrong. The goal is to build a computation c′ of A on AMP [S] which respects
the partial order of c. It must also be a computation of AMP [S], and thus must satisfy the
conditions from Definition 3.5: being a distributed computation according to Definition 3.3,
at most n − 1 crashes, every message sent to a non-crashed process is eventually received in
the computation, every process without a crash event has an infinite number of steps, there
is a linearization where the failure detector acts like S, and the atomicity of AMP [S]. Lastly,
c′ needs to be a computation of A on AMP [S], which means satisfying the conditions from
Definition 3.10.

Then the output of c for B on HO[HOstrong] will be the output of c′ for A running on
AMP [S], and thus that B solves Spec by definition of A.

Let’s start by defining c′.

• There is one computation steps in c′ for each computation step in c where A is
called, annotated with the failure detector output used in the call and the messages
in sim_received, and the simulated state after the call to A.

• Crashes are for processes which don’t have an infinite number of computation steps in
c′. They happen just after the last computation step with a call to A (after the possible
emissions from the next round)



84 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

• Receptions happen at the receiver end just before the first call to A with the correspond-
ing message in sim_received. If there is no such step, the reception never happens.

• Emissions happen just after the computation step with a call toA which adds the message
to to_send; these emissions happen before the possible crash. They also happen if and
only if the corresponding receptions also happen in c′.

The partial order of c′ is defined by the following rules:

• For every process, the set of local emissions and computation steps form the same chain
than in c.

• Reception of a message m is smaller than the emission of m.

• A crash is a maximal element for the process. (this is for free, because no event in c′

happens without a computation step in c where A is called, and the crash is bigger than
all these events by definition and the first point above.)

• Reception of a message m at p is smaller than the first computation step where m is
used.

This partial order is coherent with the partial order on c (except receptions with previous
local events). Notice that every event in c′ is placed according to a computation step calling
A; this is because the messages used in the simulation are abstracted inside the view sent
at each round. So the only constraint on the partial order of c′ is whether the events in c′

corresponding to two computation step cs1 and cs2 calling A in c are in the same order than
cs1 and cs2.

Without loss of generality, let’s assume that cs1 ≺c cs2. Then we have the following case
for e1 and e2 in c′ corresponding respectively to cs1 and cs2.

• If cs1 and cs2 happen at the same process p, then receives(cs1) ≺c′ compStep(cs1) ≺c′
emissions(cs1) ≺c′ compStep(cs2) ≺c′ emissions(cs2) (≺c′ crash(cs2) if there is a
crash), because the set of local emissions and computations steps form the same chain
in c′ than the computation steps in c.

• If cs1 and cs2 happen at different processes p1 and p2, then there’s a chain of messages
from p1 starting at or after the emission for cs1 and arriving at p2 at or after the receives
for cs2. So every event corresponding to cs1 in c′, with the exception of a possible crash,
are necessarily smaller by ≺c′ than any event corresponding to cs2, with the exception
of other receptions corresponding to cs2.

Then, we have to show that c′ satisfies the properties of a computation of
HO[HOcomputation] from Definition 3.6.

• (Distributed Computation) A distributed computation of AMP [S] is also a dis-
tributed computation. So it satisfies the conditions of Definition 3.3.

– (Reception of message used in computation event) By definition of c′, the
message used in a computation event are exactly those used by the correponding
computation event in c. Because c is a distributed computation, these messages
were received in c before the computation event according to ≺c. And by definition
of c′, the reception happens at some point before the computation event in c′.



3.3. SIMULATIONS 85

– (Local emissions and computation steps form a chain) This follows from
the fact that this holds in c because it is a distributed computation. Then the
definition of c′ says that the emissions and computations steps in c′ form the same
chains than in c.

– (If reception, then emission). Every reception of c′ corresponds to a reception
in c. Then the fact that c is a distributed computation and the definition of c′
ensures that the emission happens in c and also in c′.

– (Emission smaller than reception) This follows from the definition of ≺c′ .

• (At most n− 1 crashes) A process has a crash in c′ if it has only finitely many rounds
in c where it calls A. And the condition to call A at a round is that every process heard
at this round has the messages put in to_send.

By Definition 3.25 of HOstrong, there is at least one process s that is in every heard-of
set of the collection ho for c. This entails that every one hears the message from this
process at every round, and thus when s receive messages, the view of these processes
must contain its own to_send eventually. Thus s always eventually calls A.

Hence the processes simulated by s in c′ has an infinite number of computation steps,
and thus never crashes. We conclude that there are at most n− 1 crashes in c′.

• (Every message sent to a non-crashed process is eventually received) By def-
inition of c′, if a message is sent, it is also received. So this is free.

• (Correct processes have an infinite number of steps) By definition of c′, this
means that every correct process of c′ is simulated by a process in c that calls A infinitely
many itme. And the condition for calling A is that every heard process has the local
to_send in its view. This can be rephrased by saying that for every correct process p, if
it always eventually hear from process q, then q must also always eventually hear from
p. That is, p is strongly correct in c.

We thus show that the strongly correct processes in t are correct processes in t′. Actually,
we prove a stronger property that will serve for the failure detector part: ∀p ∈ Π : p
strongly correct in t⇐⇒ p correct in t′.

– (⇒) Let p ∈ Π be strongly correct in c. We show that p is correct in c′.
By definition of strongly correct process, ∀q ∈ Π : p ∞ q. This entails that after
each simulation step of p, the additional messages it puts in its view are eventually
heard by every other process. Thus, every process that p hears from will eventually
have heard of these messages, and p will change round.
We conclude that p calls A an infinite number of time, and thus that p is correct
in c′.

– (⇐) Let p ∈ Π be correct in c′. We show that it is strongly correct in c. We
proceed by contradiction: assume p is weakly correct. By HOstrong, we know that
the source s is strongly correct. This entails that p 6∞ s ∧ s ∞ p.
By definition of s, p hears from s at each round; and by p 6∞ s, there is a round
from which no message from p is ever heard by s. This entails that from this round,



86 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

the condition for calling A never holds. Thus, p is faulty in c′, which contradicts
the hypothesis that p is correct in c′.
We conclude that p is strongly correct in c′.

• (Linearization where Failure Detector in S) Finally, we need to show that there’s
a linearization of c′ where the values of fd are in a history of S for the corresponding
failure pattern. We take t′ any linearization of c′ satisfying the atomicity of AMP [S].
Because t′ only fixes the output of the failure detector at computation steps, the history
of the failure detector is actually underspecified. We complete it by saying that no
failure detector output changes between the changes visible in computation steps (we
interpolate the values by keeping the output constant until the next value).

– (Strong completeness) Let p be a correct process, q be a faulty process and s

the source guaranteed by HOstrong. Then ∃r > 0 such that starting on round r,
q never calls A again. This means, among other things, that q 6∞ s. Because if
q
∞
 s, messages from q would always eventually reach s, which would broadcast

them in the next round. Then, q would call A.
Moreover, for messages from q to never again reach s, they must never reach a
process k ∈ Π such that k ∞

 s.
Now, p is correct. We showed above that this entails it is strongly correct in t. Since
s
∞
 p by definition of HOstrong, we have p ∞ s by definition of strong correctness.

Hence, by the reasoning above q 6∞ p. Therefore, p will eventually never hear from
q again, thus suspecting it at every round. By our interpolation, the failure detector
module at p suspects constantly q from this point on in t′.
We conclude that fd satisfies strong completeness in t′

– (Weak accuracy) For a process p to suspect a process q, p needs to have not
received q’s message at the round where A is called. But by definition of HOstrong,
∃s ∈ Π a source that is heard by all at each round. We conclude that s is never
suspected by any process, and thus that fd satisfies weak accuracy in t′.

• (Atomicity of AMP [S]) By Definition 3.5, the atomicity of AMP [S] depends on
the receptions receivescs, the next computation step cs and the following emissions
emissionscs to be atomic. So we’re looking for a linearization t′ of c′ such that for every
process p and every round r, there are no other events in t′ between the receivescs and
cs, or between cs and emissionscs. Showing that such a linearization exists is equivalent
to showing that no other event e exists such that for receivescs ≺c′ e ≺c′ cs ∨ cs ≺c′
e ≺c′ emissionscs.
The first case is impossible because by definition of c′, all events e′ such that
receivescs ≺c′ e′ are either cs or bigger than cs by ≺c′
Then let’s focus on the second one. Let e′ be any event in c′ distinct from cs and
emissionscs. Since both events happen at p, if some distinct events are causally between
them, then one must happen at p too. So we can assume that e′ happens at p, without
loss of generality. Then e′ cannot be a computation step or an emission because c′
respects the chain of computation steps and sends in c. So it’s a reception. But by
definition of c′, if some reception rec is ≺c′ than some emission s, there’s necessarily a
computation step in between. It’s not the case here, and thus e′ doesn’t exist.



3.3. SIMULATIONS 87

Hence there is no such even e, and the linearity exists. We conclude that c′ satisfies the
atomicity of AMP [S].

Lastly, we have to show that c′ is a computation of A on AMP [S].

• (Annotation of computation steps by messages from round) By definition of c′,
the messages annotating the computation step of p at round r are the messages used in
the call to Ap, which are exactly those received by p before this computation step.

• (Annotation of computation step by state) By definition of c′, each computation
step at p is annotated by the simulated state resulting from the application of Ap to the
new value of the failure detector new_fd, the set of received messages, and the previous
simulated state.

• (Message to send) By definition of c′, each emission at p sends a message given by the
application of Ap to the new value of the failure detector new_fd, the set of received
messages, and the previous simulated state.

There’s one last detail one needs to address: the processes for which A must decide in c′
are the same than the ones for which B must decide in c. We already proved it: the correct
processes of c′ are the strongly correct processes of c.

By everything above, since A will solve Spec for the correct processes of c′, B will solve
Spec for the strongly correct processes of c (and maybe some other processes as well, but this
agree with the definition of faulty processes in a specification).

Theorem 3.35 (Simulation of AMP [♦S] on HO[HO♦strong]). Let Spec be a specification.
If ∃A an algorithm solving Spec on AMP [♦S], then ∃B an algorithm solving Spec on
HO[HO♦strong].

Proof idea. Same proof as for the previous simulation, with an eventual source instead of just
a source. Since all the properties of the source used in the previous proof depended on it being
always eventually heard, they transfer to this predicate.

Proof. The proof follows the same structure as the one for Theorem 3.34; the parts where the
specific failure detector or predicate are used are in proving that strongly correct processes in
t are correct in c′, and in proving that fd satisfies the failure detector properties in c′.

The equivalence of strongly correct in c and correct in c′ follows from the same reason as
in the proof above, because there is an eventual source, and the proof relies on the eventual
existence of such a source.

Finally, we need to show that there’s a linearization of c′ where the values of fd are
in a history of ♦S for the corresponding failure pattern. We take t′ any linearization of c′
satisfying the atomicity of AMP [♦S]. Because t′ only fixes the output of the failure detector at
computation steps, the history of the failure detector is actually underspecified. We complete
it by saying that no failure detector output changes between the changes visible in computation
steps (we interpolate the values by keeping the output constant until the next value).

• (Strong completeness) Let p be a correct process, q be a faulty process and s the
eventual source guaranteed by HO♦strong. Then ∃r > 0 such that starting on round r,
q never calls A again. This means, among other things, that q 6∞ s. Because if q ∞ s,



88 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

messages from q would always eventually reach s, which eventually becomes a source,
and thus would broadcast q’s messages in the next round. Then, q would call A.
Moreover, for messages from q to never again reach s, they must never reach a process
k ∈ Π such that k ∞

 s.
Now, p is correct. We showed above that this entails it is strongly correct in c. Since
s
∞
 p by definition of HO♦strong, we have p ∞ s by definition of strong correctness.

Hence, by the reasoning above q 6∞ p. Therefore, p will eventually never hear from q

again, thus suspecting it at every round. Thus by our interpolation, the failure detector
module at p suspects q constantly from this point on.
We conclude that fd satisfies strong completeness in t′

• (Eventual weak accuracy) For a process p to suspect a process q, p needs to have
not receive q’s message at the round where A is called. But by definition of HO♦strong,
∃r > 0, ∃s ∈ Π such that s is a source starting from round r. We conclude that s
is eventually never suspected again by any process, and thus that fd satisfies eventual
weak accuracy in t′.

Theorem 3.36 (Simulation of AMP [♦P] on HO[HO♦perfect]). Let Spec be a specifica-
tion. If ∃A an algorithm solving Spec on AMP [♦P], then ∃B an algorithm solving Spec
on HO[HO♦perfect].

Proof. The proof follows the same structure as the one for Theorem 3.34; the parts where the
specific failure detector or predicate are used are in proving that strongly correct processes
in c are correct in c′, and in proving that fd satisfies the failure detector properties in some
linearization of c′.

The equivalence of strongly correct in c and correct in c′ follows from the same reason as
in the proof above, because HO♦perfect entails the existence of an eventual source. Assume
there is no eventual source. After the round r where the predicate starts constraining the
collection, any process in Π is not heard by at least one process at some round ≥ r. That
entails that ∃r′ ≥ r + 2 such that ∀r′′ ≥ r′, ∀p ∈ Π : h(r′′, p) = ∅. This contradicts the fact
that h is a collection of HO♦perfect.

Finally, we need to show that there’s a linearization of c′ where the values of fd are
in a history of ♦P for the corresponding failure pattern. We take t′ any linearization of c′
satisfying the atomicity of AMP [♦P]. Because t′ only fixes the output of the failure detector at
computation steps, the history of the failure detector is actually underspecified. We complete
it by saying that no failure detector output changes between the changes visible in computation
steps (we interpolate the values by keeping the output constant until the next value).

• (Strong completeness) This follows from the proof of strong completeness for Theo-
rem 3.35, because HO♦perfect =⇒ HO♦strong.
Indeed, if no process is eventually a source, this means that after the round where the
predicate starts constraining heard-of sets, all processes will eventually not be heard by
everyone in a round. By definition of HO♦perfect, this means that eventually no process
will be in any heard-of sets, contradicting the fact that no heard-of set is ever empty.



3.3. SIMULATIONS 89

• (Eventual strong accuracy) Let r be the round from which the predicate constrains
heard-of sets in c. Then ∀p ∈ Π, if p is strongly correct, it is a source starting from r on.
Assume p is not a source, then ∃r′ ≥ r ∧ q ∈ Π : p /∈ h(r′, q). By HO♦perfect, this entails
that ∀r′′ > r′ + 1,∀k ∈ Π : p /∈ h(r′, p). Thus, ∀p 6∞ k. By the reasoning above, there
is an eventual source s ∈ Π. Thus, s ∞ p ∧ p 6∞ s. And by Lemma 3.14, s is strongly
correct. This contradicts the strong correctness of p.
Since all strongly correct processes are sources starting from round r, they are never
suspected after round r. Thus, no correct process in t′ is ever suspected after round r.
We conclude that fd satisfies eventual strong accuracy in t′.

For the failure detector P, the simulation is slightly different. The issues stem from strong
accuracy: the first simulation (Algorithm 4) might detect crashes a few rounds in advance.
This is because q might stop receiving messages from p before the last round of p, and in
that case q is not constrained anymore by p and might progress and call A (suspecting p).
Although this is not detecting crashes of correct processes, it still invalidates strong accuracy.
The trick to solving this problem uses one specificity of HOperfect: weakly correct processes
can eventually detect their weak correctness.

Remark 3.37 (Explanation of Algorithm 5). The difference with Algorithm 4 is that processes
track the set of processes suspected by everyone they ever heard of, and add it to their own
messages. This allows us to deal with the issue of the previous simulation regarding the failure
detector P: that processes crashes can be detected slightly in advance.

As long as the processes whose crash has been detected in advance do not hear from
the process suspecting them, the execution is indistinguishable from one where the processes
crashed before being suspected. Issues arise when the process hears from the one suspecting
it, and then sends some messages – the causality here forbids reordering the messages from
the soon-to-crash process as happening before the suspicion. The addition to this simulation
ensures that if it is the case, the soon-to-crash process will stop being simulated, and thus
cannot make causality an issue.

Theorem 3.38 (Simulation of AMP [P] onHO[HOperfect]). Let Spec be a specification. If ∃A
an algorithm solving Spec on AMP [P], then ∃B an algorithm solving Spec on HO[HOperfect].

Proof. The proof follows the same structure as the one for Theorem 3.34; most notably, the
computing of c′ from c is done the same way. We only change the part using the properties of
failure detectors. One difference with the proof of Theorem 3.34 is that we don’t show that
strongly correct processes in c are exactly the correct processes in c′. Instead we show that
strongly correct processes in c are correct in c′, and that will suffice to derive that B solves
the specification from A’s definition.

So we only need to show that strongly correct processes in c are correct in c′, and that fd
satisfies the failure detector properties in c′.

We first show that strongly correct processes in c are correct in c′. Notice that any process
in t that does not always broadcast eventually stops being heard, by definition of HOperfect.
Since no heard-of set is empty by definition of HOperfect, it means at least one process always
broadcasts. And a source is strongly correct, by Lemma 3.14. Strongly correct processes in



90 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

/* Local state for process i */
〈sim_state, fd, all_fd, sim_received, view, to_send〉
/* Intial state of process i in Bi from initial state qiinit for Ai */
〈qiinit, ∅, ∅, ∅, ∅, ∅〉
/* Local algorithm B on HO[HOperfect] */
Bi(r, received〈sim_state, fd, all_fd, sim_received, view, to_send〉) =

• The new state new_state given by

– new_state.sim_state =
{
fst(sim_A) if cond_fd
sim_state otherwise

– new_state.fd = new_fd
– new_state.all_fd = new_all_fd
– new_state.sim_received =

sim_received ∪ {(j, i,m) |
(j, i, (all_fdj , viewj)) ∈ received ∧ (j, i,m) ∈ viewj}

if cond_fd

sim_received otherwise
– new_state.view =

view ∪ ( ⋃
(p,i,(all_fdp,viewp))∈received

viewp)

∪snd(simA) ∪ {(i, i, (new_all_fd, ”roundr”))}
if cond_fd

view ∪ ( ⋃
(p,i,(all_fd,viewp))∈received

viewp) otherwise

– new_state.to_send ={
snd(simA) ∪ {(i, i, (new_all_fd, ”roundr”))} if cond_fd
to_send otherwise

• The message content to broadcast is (all_fd, view).

where

• cond_fd , i /∈ new_all_fd ∧ ∀p ∈ (Π \ new_fd) : to_send ⊆ viewp

• new_fd , Π \ ({p ∈ Π | ∃(p, i, (all_fdp, viewp)) ∈ received} ∪ {i})

• new_all_fd , all_fd ∪ new_fd ∪ (⋃(p,i,(all_fdp,viewp))∈received all_fdp);

• new_sim_received = sim_received ∪ {(j, i,m) | (j, i, (all_fdj , viewj)) ∈
received ∧ (j, i,m) ∈ viewj}

• simA , Ai(new_fd, new_sim_received, sim_state)

Algorithm 5: Algorithm B on HO[HOperfect] simulating an algorithm A on AMP [P]



3.3. SIMULATIONS 91

t are those that always broadcast: if they did not, they would eventually never be heard by
anyone, including the always broadcasting process mentioned above. That would contradicts
their strong correctness.

Therefore, strongly correct processes in t are always heard, and thus the messages they
receive always contain their own messages from the previous round. Thus they satisfy the
condition cond_fd an infinite number of times, and they call A an infinite number of times
too.

We conclude that strongly correct processes in t are correct in t′.
Finally, we need to show that there’s a linearization of c′ where the values of fd are

in a history of P for the corresponding failure pattern. We take t′ any linearization of c′
satisfying the atomicity of AMP [P]. Because t′ only fixes the output of the failure detector at
computation steps, the history of the failure detector is actually underspecified. We complete
it by saying that no failure detector output changes between the changes visible in computation
steps (we interpolate the values by keeping the output constant until the next value).

• (Strong completeness) Let p be a correct process in t′ and q be a faulty process in
t′. Because q is faulty in t′ and thus in c′, it is not strongly correct in c by the above.
This implies that it eventually stops broadcasting, and by definition of HOperfect, it is
eventually never heard again by other processes.

Thus, ∃r > 0 such that starting at round r, p does not hear q. Hence, q is always added
to fd in computation steps from this round on, and it is always suspected by p for all
the following calls to A.

We conclude that fd satisfies strong completeness in t′.

• (Strong accuracy) Strong accuracy requires that every suspected process has already
crashed. Proving that a linearization satisfying this property exists means proving that
there’s no causal chain from the event where q suspects p to p and back to q again.
Or said differently, no computation step or emission at p are greater by ≺c′ than the
computation step where q suspects p. Then for some choice of t′, fd satisfies strong
accuracy in t′.

We proceed by contradiction: assume that some event at p, either a computation step
or an emission, happens by ≺c′ in between p being suspected by q and p’s crash.

By definition of causality in asynchronous distributed systems, this means that there is
a chain of messages from q to p, starting after the suspicion at q and reaching p before
the assumed event at p. By definition of Algorithm 5, each message in this chain will
transport the all_fd of the sender, and thus the final message reaching p will contain p
in its all_fd, because p is in all_fdq. Then the condition cond_fd for calling A will
always be false for p, and thus it will never make another call to A.

This contradicts the hypothesis that p makes another computation step or emission.

We thus conclude that for some choice of t′ (it doesn’t matter which one for strong
completeness), fd satisfies strong accuracy in t′.



92 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

3.4 Extending to the All-Deciding Case

As mentioned above, one of the specificities of the simulations from the previous section is
that not every process needs to decide in the definition of solvability for the Heard-Of model.
It is only required that the strongly correct processes (the ones which can communicate which
each other infinitely often) decide. However, strictly speaking, there is no crash in the Heard-
Of model, only forever silent or unheard processes. Thus, it seems natural to ask that all
processes decide. In this section, I explore two ways of converting the partial solutions given
by the simulations of the previous section into full solutions.

Definition 3.39 (Strongly Solving a Specification on HO[HO]). Let spec be a specification,
and A be an algorithm for HO[HO]. A strongly solves spec on HO[HO] , ∀in : Π →
Vin,∀out the output of A: out ∈ spec(In, ∅).

3.4.1 Full Monotony: Extending the Final Decisions

For some specifications, given a set of values decided by the strongly correct processes, each
weakly correct process can decide a value coherent with theses decisions, and with all the
concurrent decisions. I call this full monotony, and it underlies the first approach for strongly
solving specifications.

Definition 3.40 (Full Monotony). A specification (spec) on Π is fully-monotone , ∃dec :
(Π× P(Π× Vout))→ Vout :
∀in : Π→ Vin,∀F ( Π, ∀out ∈ spec(in, F ),∀out′ ∈ spec(in, ∅) such that ∀p ∈ Π\F : out′(p) =
out(p), ∀p ∈ {q | out(q) = ⊥},∃outfull ∈ spec(in, ∅) :(

outfull(p) = dec(p, {(q, v) | v ∈ Vout ∧ out(q) = v})
∧ ∀q 6= p : outfull(q) = out′(q)

)
Theorem 3.41 (Simulation of AMP [FD] on HO[HO] for Fully-monotone
Specifications). Let spec be a fully-monotone specification. Let (FD,HO) ∈
{(P,HOperfect), (S,HOstrong), (♦P,HO♦perfect), (♦S,HO♦strong)}. If ∃A an algorithm
solving spec on AMP [FD], then ∃B an algorithm strongly solving spec on HO[HO].

Proof idea. Being full-monotone ensures that weakly correct processes can decide coherently
when given the decision of some strongly correct processes. In the considered predicates,
there is an eventual source, which is strongly correct by Lemma 3.14. Hence after the deci-
sion of some strongly correct process, this decision value is propagated to everyone to decide
accordingly.

Proof. Thanks to the simulations in the previous section, for such an algorithm A, we have
B′ solving spec on HO[HO]. The way to go from B′ to B is for every process that decides in
a call to A to stop simulating, and to broadcast its decision at each round (in a special form,
so that the message can be distinguished from a normal view). Every process that receives a
decision decides for itself and propagates this decision.

By full-monotony, there is a function dec that, given a decision for a subset of processes,
returns a decision value for the other processes coherent with what has been decided. Thus,
the only issue is to know whether every process will receive a decision value.

This follows from the fact that all our predicates have an eventual source, and such an
eventual source is strongly correct by Lemma 3.14. Since the simulation from A to B′ ensures



3.4. EXTENDING TO THE ALL-DECIDING CASE 93

the decision of strongly correct processes, the source will finish and propagate its decision
value.

We conclude that B strongly solves spec on HO[HO].

Corollary 3.42 (Simulation of Consensus, Set-agreement, Leader Election and Splitter). Let
(FD,HO) ∈ {(P,HOperfect), (S,HOstrong), (♦P,HO♦perfect), (♦S,HO♦strong)}. For spec the
specification of consensus, set-agreement, leader election or splitter, if ∃A an algorithm solving
spec on AMP [FD], then ∃B an algorithm strongly solving spec on HO[HO].

Proof. For each problem, we show the full monotony by giving an explicit dec function.

• Consensus: The dec function takes the set of decisions, use the sole decided value (since
the decisions solve consensus) as the decision for the current process. This maintains
correctness, since every process still decides the same value.

• Set-agreement: For each set of decided value and each process, dec returns one of the
decided value. This maintains correctness, since the number of decided values stays the
same.

• Leader Election: The output is the leader name, dec is the same as for consensus.

• Splitter [63]: If only right (respectively down) was decided, dec returns down (respec-
tively right); otherwise (both right and down values, and/or presence of a stop), dec
returns right or down arbitrarily.

However, not all specifications are fully-monotone, for instance renaming [64], where pro-
cesses must all choose a distinct name from a namespace, isn’t. Weakly correct processes
cannot decide from the decision values of the strongly correct processes alone, because the
decision values also need to be distinct. So two weakly correct processes risk deciding the
same value.

This motivates another approach for strongly solving specifications.

3.4.2 Local Specifications: Agreeing on a Full Decision

Instead of extending a partial decision, processes could agree on a complete decision from the
start. That is, if consensus is solvable, and if each process by itself can produce a possible
complete decision coherent with the initial values (without knowing them, except its own),
then the result above for strongly solving consensus would transfer to other specifications. A
local specification is such a specification, where from a single input value, there is at least one
allowed output vector coherent with any input with this single value.

Definition 3.43 (Local Specification). Let spec be a specification on Π. spec is a local
specification , there is a function local_dec : (Π × Vin) → (Π → Vout) such that ∀p ∈
Π,∀vin ∈ Vin, ∀in : Π→ Vin : in(p) = vin =⇒ local_dec(p, vin) ∈ spec(in, ∅).

Theorem 3.44 (Simulation of AMP [FD] on HO[HO] for Local
Specifications). Let spec be a local specification. Let (FD,HO) ∈
{(P,HOperfect), (S,HOstrong), (♦P,HO♦perfect), (♦S,HO♦strong)}. If ∃A an algorithm
solving consensus on AMP [FD], then ∃B an algorithm strongly solving spec on HO[HO].



94 CHAPTER 3. CLASHING HEARD-OF PREDICATES WITH OTHER MODELS

Proof. It follows from Corollary 3.42: if there is an algorithm solving consensus on AMP [FD],
it can be strongly solved on HO[HO]. For a local specification, each process can compute
an allowed output vector from its input value. Then a consensus is solved on these proposed
output vectors, and every process decides the value corresponding to itself in the chosen
vector.

Renaming, although not fully-monotone, is a local specification: any naming scheme in
the namespace is a possible complete decision. Hence, renaming is also solvable with the
predicates corresponding to the failure detectors of the Chandra-Toueg hierarchy.

Corollary 3.45 (Simulation of Renaming). Let (FD,HO) ∈
{(P,HOperfect), (S,HOstrong), (♦P,HO♦perfect), (♦S,HO♦strong)}. If ∃A an algorithm
solving consensus on AMP [FD], then ∃B an algorithm strongly solving renaming on
HO[HO].

Proof. Consensus is a fully-monotone specification. Hence by Corollary 3.42, there is an
algorithm Bcons strongly solving consensus for each of the corresponding heard-of predicates.
Then B is simply the algorithm of running Bcons where each process proposes an allowed
output vector to renaming, and decides its name in the chosen vector at the end. This works
because renaming is a local specification: any allocation of distinct names to processes is an
allowed output vector.

Every example given of fully-monotone specification is also a local specification. So why not
limit ourselves to the latter? First, the value of a local specification depends on strongly solving
consensus, which is proven using the full-monotony of consensus. Secondly, this dependence
on consensus means that local specification probably generalizes less to other predicates than
full-monotony: solving consensus is a really strong requirement.

3.5 Conclusion

3.5.1 Summary

The equivalences proven above are evidence than for many important problems, the Heard-Of
model is at least as powerful as asynchronous models with failure detectors. If the decision
is limited to strongly correct processes, then the equivalence is a straightforward equivalence
between the predicates given here and the failure detectors from the Chandra-Toueg hierarchy.
When forcing everyone to decide, many interesting problems like consensus and renaming stay
equivalent in terms of computability between the two models. Therefore, for these important
cases, forcing communication-closed rounds doesn’t weaken the power of the model.

3.5.2 History of the research

Every aspect of this research struggled because of the Perfect failure detector. I wanted to
find corresponding predicates for the Chandra-Toueg hierarchy from the start of my thesis,
but the one for the Perfect failure detector kept eluding me. I probably discovered the final
version a couple of times, but failed to convince myself that it was the right one.

Similarly, this failure detector forced me to lower my ambitions about these results. Instead
of proving a sweeping equivalence with all failure detectors using the same simulation, I had



3.5. CONCLUSION 95

to deal with a specific simulation for this one alone, and thus to limit the previous equivalence
to concrete failure detectors, since it didn’t generalize completely.

3.5.3 Perspectives

Among remaining issues are the generalization of the equivalence to other failure detectors,
and the lookout for problems that are neither local nor fully-monotone.





Chapter 4

Leveraging Heard-Of Predicates

Sommaire
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.1 Closed-above predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 Oblivious algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.3 K-set agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 One round upper bounds: a start without topology . . . . . . . . . . . 101
4.3.1 Simple closed-above predicates: almost too easy . . . . . . . . . . . . . . 102
4.3.2 General closed-above predicates: tweaking of upper bounds . . . . . . . . 103
4.3.3 Intuitions on upper and lower bounds . . . . . . . . . . . . . . . . . . . . 104

4.4 Elements of combinatorial topology . . . . . . . . . . . . . . . . . . . . 105
4.4.1 Preliminary definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.2 Uninterpreted complexes of closed-above predicates . . . . . . . . . . . . . 106
4.4.3 Interpretation of uninterpreted complexes . . . . . . . . . . . . . . . . . . 108
4.4.4 A Powerful Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 One round lower bounds: a touch of topology . . . . . . . . . . . . . . 112
4.6 Multiple rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6.1 Closure-above is not invariant by product, but its still works . . . . . . . 117
4.6.2 Upper bounds for multiple rounds . . . . . . . . . . . . . . . . . . . . . . 118
4.6.3 Lower bounds for multiple rounds . . . . . . . . . . . . . . . . . . . . . . 121

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7.2 History of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.7.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.1 Introduction

4.1.1 Motivation

As seen in the previous chapters, the Heard-Of model uses the concept of round for formalizing
many different models within a common framework. What’s left to do is to prove results on



98 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

these formalized models. Researchers provided, among other things, new algorithms for con-
sensus in the original paper by Charron-Bost and Schiper [37]; characterizations for consensus
solvability by Coulouma et al. [41] and Nowak et al. [42]; a characterization for approximate
consensus solvability by Charron-Bost et al. [39]; a study of k-set agreement by Biely et al. [44];
and more.

But the techniques used for proving these results tend to be ad-hoc – very specific to
some model or setting. Hence every new paper carry the burden of finding new techniques.
What would help here is a general approach to proving impossibility results and bounds on
round-based models.

Actually, there is at least one example of a general mathematical technique used in this
context: the characterization of consensus solvability through point-set topology by Nowak et
al. [42].

I propose what might be seen as an extension to higher dimension of this intuition, by
applying combinatorial topology (instead of point-set topology) to bear on k-set agreement
(instead of just consensus).

Combinatorial topology abstracts the reasoning around knowledge and indistinguishability
behind many impossibility results in distributed computing. It thus provide generic mathe-
matical tools and methods for deriving such results [19]. Moreover, this approach is the only
one that managed to prove impossibility results and characterization of solvability of the k-set
agreement [65], our focus problem.

4.1.2 Overview

Concretely, this chapter focus on closed-above heard-of predicates, that is predicates where
constraints happen round-per-round, and the set of communication graphs allowed is the
closure-above of a set of graphs. These predicates capture many safety properties: the ones
requiring some underlying structure in communication, like having an underlying star, ring
or tree. This is a strict generalization of the predicates with a fixed communication graph
considered by Castañeda et al. [66].

For this class of predicates, I derive upper bound and lower bounds on the k for which k-set
agreement is solvable. And while the proofs of the bounds use combinatorial topology, they are
stated in terms of variants of the domination number, a well-known and used combinatorial
number on graphs.

• First closed-above predicates are defined in Section 4.2.

• Then various upper bounds on k for k-set agreement in one round are proved in Sec-
tion 4.3. These bounds correspond to algorithms solving the k-set agreement in one
round. I present them first because they do not rely on combinatorial topology, and
they serve to introduce combinatorial numbers of use later.

• Next, Section 4.4 introduces the combinatorial topology necessary for our lower bounds,
both the basic definitions and the main technical lemma.

• Then its lower bounds on k which are proved, still for one round, in Section 4.5. These
bounds leverage combinatorial topology, but are state in terms of graph properties only.
these bounds use combinatorial topology, but are stated in terms of graph properties.



4.2. DEFINITIONS 99

• Finally, Section 4.6 generalizes both upper and lower bounds to the case of multiple
rounds.

The content of this chapter comes from the paper "K-set agreement bounds in round-based
models through combinatorial topology" published at PODC 2020, and written with Armando
Castañeda.

4.1.3 Related Works

Combinatorial Topology Combinatorial Topology was first applied to the problem of k-
set agreement in wait-free shared memory by Herlihy and Shavit [19], Saks and Zaharoglou [67]
and Borowsky and Gafni [68].

Beyond these first forays, many other results got proved through combinatorial topology.
Among others, we can cite the lower bounds for renaming by Castañeda and Rajsbaum [69]
and the derivation of lower-bounds for message-passing by Herlihy and Rasjbaum [70]. There is
even a result by Alistarh et al. [71] showing that traditional proof techniques (dubed extension-
based proofs) cannot prove the impossibility of k-set agreement in specific shared-memory
models, whereas techniques from combinatorial topology can.

For a full treatment of combinatorial topology applied to distributed computing, see Herlihy
et al. [19].

Combination of Topology and Round-based models Two papers at least applied topol-
ogy (combinatorial or not) to general round-based models in order to study agreement prob-
lems: Godard and Perdereau [72] and Nowak et al. [42].

Godard and Perdereau [72] used similar tools of combinatorial topology to study k-set
agreement in message adversary models; the difference lies in the constraints they consider
on communication. Whereas we focus on closed-above predicates, they limit themselves to
models with at most f omission failures in a fixed arbitrary communication graph. The two
are actually incomparable: when the fixed graph is not the full graph, their model is not
closed-above; and closed-above models might have additional constraints than a number of
possible message loss.

Nowak et al. [42] proposed a characterization of consensus for general round-based models
(not necessarily oblivious) using point-set topology. Their results are both stronger (because
it is a complete characterization for general predicates) and weaker (because it only treats
consensus) than ours. The point-set topology approach seems limited to 1-set agreement
(consensus), and going to k-set agreement might require combinatorial topology.

4.2 Definitions

Every result in this chapter assumes a model where processes know all identities of other
processes, and notably know from who they received each message.

4.2.1 Closed-above predicates

The predicates studied here are of a restricted form, where the graph for each round is decided
independently of the other rounds. The predicate is thus entirely characterized by the set of
allowed graphs. I call these predicates oblivious, following Coulouma et al [41].



100 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

Definition 4.1 (Oblivious predicates). Let HO be a communication model. Then HO is
oblivious , ∃S ⊆ GraphsΠ : HO = Sω.

Intuitively, oblivious predicates capture safety properties: bad things that must not hap-
pen. Or equivalently, good things that must happen at every round. Usually, these good
properties are related to connectivity, like containing a cycle or a spanning tree. Since such a
property tends to be invariant when more messages are sent, a natural constraint on oblivious
predicates is to be defined by a set of subgraphs.

Definition 4.2 (Closed-above predicates). Let HO be an oblivious predicate. Then HO is
closed-above , ∃S ⊆ GraphsΠ : HO = ( ⋃

G∈S
↑ G)ω, where ↑ G , {H | V (H) = V (G) ∧

E(H) ⊇ E(G)}.
We call the graphs in S the generators of HO.
If S is a singleton, then HO is simple closed-above.

Classical examples of closed-above predicates are the non-empty kernel predicate HOnek
(see Table 1.1) and the non-split predicate HOnosplit (see Table 1.1), used notably by Charron-
Bost et al. [39] for characterizing the solvability of approximate consensus – the variant of
consensus where the decided values should be less than ε apart, where ε > 0 is fixed beforehand.
Another closed-above predicate is the one satisfying the tournament property of Afek and
Gafni [32], which they show is equivalent to wait-free read-write shared memory. In general,
oblivious predicates where the constraint on rounds is about how much message can be lost/not
on-time are closed-above.

Which segues into an example of an oblivious predicate which is not closed-above: the one
generated by all graphs containing a cycle, except the clique. Here the constrains not only
limits which messages might be lost/on-time, but also forces at least one such loss.

Closed-above predicates also have a good trade-off between expressivity and simplicity,
since the "combinatorial data" used to build them is contained in a small number of graphs.

Finally, the patterns expected by safety properties tend to be independent of which pro-
cesses play which roles – what matters is the existence of a ring or spanning tree, not who is
where on it. I call these closed-above predicates symmetric predicates: their set of possible
graphs possible for each round is closed under permutation.

Definition 4.3 (Symmetric predicates). LetHO be a closed-above predicate, and S be the set
of graphs generating it. Then HO is symmetric , S = Sym(S), where Sym(S) = {π(G) |
G ∈ S ∧ π : GraphsΠ → GraphsΠ a permutation on graphs permuting the processes}.

In the rest of the paper, I only consider closed-above predicates, both symmetric and not.

4.2.2 Oblivious algorithms

Because most applications of combinatorial topology to distributed computing aim towards
impossibility results, the traditional algorithms considered err on the side of power: full in-
formation protocols, which exchange at each round the view of everything ever heard by
the process. For example, after a couple of rounds, views will contain nested sets of views,
themselves containing views, recursively until the initial values.

In contrast, I focus on oblivious algorithms. That is, each process only remembers the
initial values and their corresponding processes, not who sent them or when. This information



4.3. ONE ROUND UPPER BOUNDS: A START WITHOUT TOPOLOGY 101

amounts to a function from Π to the set of initial values (with a ⊥ when the value is not
known). In turn, these algorithms lose the ability to trace the path of the value.

Oblivious algorithms can be viewed as full-information protocols whose decision map (the
function from final view to decision value) depends only on the set of known pairs (pro-
cess,initial value). The full-information protocol might still be used for deciding when to apply
the decision map, but this map loses everything except the known pairs (process,initial value).
That is, the decision map is constrained to decide similarly in situations where it received the
same information about the initial configuration, whatever the history of messages.

Definition 4.4 (Oblivious algorithm). Let A be a full-information protocol, with decision
map δ. Then A is an oblivious algorithm , ∀v a view: δ(v) = δ(flat(v)),
where flat(v) = ⋃

(p,vp)∈v
flat((p, vp))

and flat((p, vp)) =
{
{(p, vp)} if vp is a singleton from Vin
flat(vp) otherwise

The corresponding definition of solvability is that there is an algorithm, a number of rounds
r and a decision map such that after running the algorithm for r rounds, applying the decision
map gives decision that form an accepted output.

4.2.3 K-set agreement

The focus problem of this chapter is k-set agreement – the weakening of consensus where at
most k different values can be decided.

Definition 4.5 (K-set agreement). An algorithm A solves the k-set agreement for k > 0 ,
the decided values satisfy the following two properties:

• Validity. Every decided value is an initial value.

• Agreement. The set of decided values is of size ≤ k.

• Termination. Every process decides eventually some value

This choice of problem follows from two considerations. First, Nowak et al. [42] already
completely solved the consensus for heard-of predicates (message adversaries in their termi-
nology). The problem thus cannot be consensus, and k-set agreement is the usual choice to
go beyond consensus. Second, k-set agreement is the most important problem for which com-
binatorial topology techniques seems necessary. Neither the failure detector approach nor the
knowledge-based approach managed to extract as much results as combinatorial topology for
this problem. Hence it feels like both an interesting and promising problem to study here.

4.3 One round upper bounds: a start without topology

Although lower bounds on k are the target, they require upper bounds to gauge their strength.
Let’s thus start with upper bounds on k-set agreement for closed-above predicates. Another
advantage of starting with these upper bounds is that they rely on concrete algorithms, and
also use generalizations of the classical domination number that will be used for our lower



102 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

bounds. Lastly, the bounds here in this section and the next one only work on the one round
case. Bounds for multiple rounds depend on these one round bounds.

These bounds follow from a very simple algorithm for solving k-set agreement.

Definition 4.6 (One round k-set agreement algorithm). Assume that the set of initial values
to k-set agreement is totally ordered. Then the one round k-set agreement algorithm
1− round , the algorithm where each process

• broadcasts its initial value;

• and decides the minimum value it received.

4.3.1 Simple closed-above predicates: almost too easy

Recall that the domination number of a graph is the size of its smallest dominating set, that
is the minimum size of a set of nodes whose set of outgoing neighbors is Π. Note that graphs
here have self-loops – that is, the outgoing neighbors of a set S ⊆ Π contains S. For ease of
representation, these loops are not drawn in the figures.

Definition 4.7 (Domination number). Let G be a graph. Then its domination number
γ(G) , min{i ∈ [1, n] | ∃P ⊆ Π : |P | = i ∧

⋃
p∈P

OutG(p) = Π}.

Because the simple closed-above predicate generated by G only allows graphs containing G,
these graphs’ domination number is at most γ(G). This entails a very simple upper bound on
k-set agreement. The algorithm depends explicitly on G: it is parameterized with a minimum
dominating set of G, which serve to synchronize the decided values among processes.

Definition 4.8 (One round k-set agreement algorithm). Assume that the set of initial values
to k-set agreement is totally ordered. Then the one round k-set agreement algorithm
parametrized by a set of process, 1 − roundParam , ∀S ⊆ Π, 1 − roundParam(S) is
the algorithm where each process

• broadcasts its initial value;

• and decides the minimum value it received from a process of S. If no such value were
received, it decides the minimal value it received from any process.

Theorem 4.9 (Upper bound on k-set agreement by γ(G)). Let G be a graph, and let D
be a minimum dominating set of G. Then Algorithm 1 − roundParam(D) solves γ(G)-set
agreement in one round on the simple closed-above predicate generated by G.

Proof. BecauseD is a dominating set, every process receives at least one value from it, so every
process decides a value from a process of D. Finally, since the minimum dominating set has
at most γ(G) distinct values, at most γ(G) values are decided, and thus 1− roundParam(D)
solves γ(G)-set agreement.

The tightness of this bound follows from Castañeda et al. [66, Thm 5.1]: the oblivious
predicate with a single graph G cannot solve k-set agreement in one round for k < γ(G).
Hence the weaker simple closed-above predicate generated by G cannot solve it either.

Still, simple closed-above predicates are somewhat artificial, as can be seen in the proof:
the algorithm is parametrized with a precomputed minimum dominating set of the known



4.3. ONE ROUND UPPER BOUNDS: A START WITHOUT TOPOLOGY 103

subgraph contained in the actual communication graph. A more realistic take would add
uncertainty to which graph is the underlying subgraph; the next step is thus general closed-
above predicates.

4.3.2 General closed-above predicates: tweaking of upper bounds

For general closed-above predicates, there is not a single subgraph but a set of possible un-
derlying subgraphs. This makes the previous approach inapplicable: the algorithm cannot
hardcode a dominating set because the underlying subgraph is not known.

This new issue motivates the definition of a weakening of the domination number: the
equal-domination number of a set of graphs. Intuitively, any set of that many processes forms
a dominating set in all the graphs considered.

Definition 4.10 (Equal-Domination number of a set of graphs). Let S be a set of graphs.
Then its equal-domination number γeq(S) , max

G∈S
γeq(G), where γeq(G) = min{i ∈ [1, n] |

∀P ⊆ Π : |P | = i =⇒ ⋃
p∈P

OutG(p) = Π}.

Then the algorithm from Definition 4.6 solves γeq(S)-set agreement in one round for the
closed-above predicate generated by S – and it doesn’t need a minimum dominating set as a
parameter.

Theorem 4.11 (Upper bound on k-set agreement by γeq(S) for general closed-above pred-
icates). Let S be a set of graphs. Then Algorithm 1 − round solves γeq(S)-set agreement in
one round on the closed-above predicate generated by S.

Proof. Let P be a set of γeq(S) processes with the smallest initial values. They have thus at
most γeq(S) distinct initial values. By Definition 4.10 of γeq(S), P dominates every graph in
S, and thus every graph in the closed-above predicate generated by S.

Thus taking the minimum after one round will result in deciding one of those initial values,
and thus one of at most γeq(S) values. We conclude that the algorithm from solves γeq(S)-set
agreement after one round on the closed-above predicate generated by S.

Since the equal-domination number is independent of which process does what, it is the
same for any permutation of the graph. This entails an upper bound on symmetric predicates
as a corollary.

Corollary 4.12. Let S be a set of graphs. Then Algorithm 1 − round solves γeq(S)-set
agreement in one round on the closed-above predicate generated by Sym(S).

Now, the natural question to ask is the tightness of this bound.
The answer depends on the graphs. To see it, let’s look at another combinatorial number:

covering numbers. Given fewer processes than the equal-domination number of the graph,
they do not always form a dominating set. Nonetheless, they might still get heard by some
minimum number of processes. We call such minimums the covering numbers of the graph: the
i-th covering number of G is, given any set of i processes, the minimum number of processes
hearing this set in G.

Definition 4.13 (Covering numbers of a set of graphs). Let S be a set of graphs. Then ∀i <
γeq(S), its i-th covering number covi(S) , min

G∈S
covi(G), where covi(G) , min

P⊆Π
|P |=i

|( ⋃
p∈P

OutG(p))|.



104 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

p1

p2

p3p4

p1

p2

p3p4

Figure 4.1: Two examples of communication graphs

These numbers capture the ability of a set of processes to disseminate their values in the
graph. Taking the i processes with the smallest initial values, at least covi(S) processes will
hear them, and thus choose one of the i smallest initial values. This then gives a solution to
(i+ (n− covi(S)))-set agreement in one round.

Theorem 4.14 (Upper bounds on k-set agreement by covering numbers for general
closed-above predicates). Let S be a set of graphs. Then ∀i ∈ [1, γeq(S)[: Algorithm 1− round
solves (i+ (n− covi(S)))-set agreement in one round on the closed-above predicate generated
by S.

Proof. For a set of i processes with the i smallest initial values, they will reach at least covi(S)
processes after the first round. Thus these processes will decide one of the i values when taking
the smallest value they received.

As for the rest of the processes, we can’t say anything about what they will receive, and
thus we consider the worst case, where they all decide differently, and not one of the i smallest
values. Then the number of decided values is at most i + (n − covi(S)), and the theorem
follows.

The covering numbers are also independent of processes names; this entails a similar upper
bound on symmetric predicates as a corollary.

Corollary 4.15. Let S be a set of graphs. Then ∀i ∈ [1, γeq(S)[: Algorithm 1− round solves
(i + (n − covi(S)))-set agreement in one round on the closed-above predicate generated by
Sym(S).

When is this new bound better than the one using the equal-domination number? When
there is some i such that n − covi(S) < γeq(S) − i. Let’s take the symmetric predicates
generated by the two graphs in Figure 4.1.

In the first predicate, n−covi(S) < γeq(S)−i never happens, because every covering number
of a star equals 1 (the biggest set of outgoing neighbors different from Π contains only one
process), and its equal-domination number equals n (because when taking only n−1 processes,
the center of the star might not be in there). Thus n− covi(S) = n− 1 ≥ γeq(S)− i = n− i.

On the other hand, this is the case in the second predicate, because cov2(S) = 3 and
γeq(S) = 4. Thus n − cov2(S) = 4 − 3 = 1 < γeq(S) − i = 4 − 2 = 2. Hence the upper
bound with covering numbers ensure 3-set agreement solvability while the upper bound with
the equal-domination number only ensures 4-set agreement solvability.

4.3.3 Intuitions on upper and lower bounds

Why do these upper bounds hold? Because the underlying graphs betray some minimal
connectivity of sets of processes, in the form of combinatorial number. From these, it follows



4.4. ELEMENTS OF COMBINATORIAL TOPOLOGY 105

how far the minimal values will spread in the worst case, and thus the bound on the maximum
number of values decided.

On the other hand, the lower bounds will follow from studying how much values can spread
in the best case. Why? Because the more values can spread, the more processes can distinguish
between initial configurations, and the more they have a chance to decide correctly. Ensuring
enough indistinguishability thus entails an impossibility at solving k-set agreement.

This indistinguishability is linked to higher-dimension connectivity in combinatorial topol-
ogy [19, Thm. 10.3.1]; Let’s thus turn to the topological approach to distributed computing
for the lower bounds.

4.4 Elements of combinatorial topology

4.4.1 Preliminary definitions

First, we need to introduce the mathematical objects that this approach uses. These are
simplexes and complexes. A simplex is simply a set of values, and can be represented as a
generalization of a triangle in higher dimensions. Simplexes capture configurations in general,
be them initial configurations, intermediate configurations, or decision configurations.

Definition 4.16 (Simplex). Let Cols and V iews be sets. Then σ ⊆ Cols × V iews is a
simplex on Cols and V iews (or colored simplex) , ∀p ∈ Cols : |{v ∈ V iews|(p, v) ∈ σ}| ≤ 1.

For projections, col(σ) or names(σ) , {p ∈ Cols | ∃v ∈ V iews : (p, v) ∈ σ}. And
views(σ) = {v ∈ V iews | ∃p ∈ Cols : (p, v) ∈ σ}. We also write viewσ(p) for the v ∈ V iews
such that (p, v) ∈ σ: viewσ(p) , {v ∈ V iews|(p, v) ∈ σ}

The dimension of σ is |σ| − 1.
A simplex τ is a proper face of σ , τ ( σ.

Although Views could be any set for readability, the traditional view is a set of pairs, the
first element being a process name, and the second being either another view or an initial
value. For more details, refer to [19].

Then a complex is a set of simplexes that is closed under inclusion. It captures all consid-
ered configurations.

Definition 4.17 (Complex). Let Cols and V iews be sets. Then C ⊆ P(Cols× V iews) is a
simplicial complex on Cols and V iews (or colored simplicial complex) ,

• ∀(p, v) ∈ Cols× V iews : {(p, v)} ∈ C.

• ∀σ, τ simplexes on Cols× V iews: σ ∈ C ∧ τ ⊆ σ =⇒ τ ∈ C.

The facets of C , {σ ∈ C | ∀τ ∈ C : σ ⊆ τ =⇒ τ = σ}.
The dimension of C is the maximum dimension of its facets. C is called pure if all its

facets have the same dimension.

How to go from heard-of predicates, which are generated by graphs, to simplexes and
complexes?

Starting with a single graph G, the uninterpreted simplex of this graph is the simplex
capturing the configuration after a round using G in terms of who hears from whom. It
disregards input values, which makes it uninterpreted. Figure 4.2 shows a graph and its
corresponding uninterpreted simplex.



106 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

p1

p2

p3

(a) Graph

(p1, {p1, p3} (p2, {p1, p2}

(p3, {p3}

(b) Uninterpreted simplex

Figure 4.2: A graph and its uninterpreted simplex

Definition 4.18 (Uninterpreted simplex of a graph). Let G be a graph. Then the uninter-
preted simplex of G is σG , the colored simplex {(p, InG(p) | p ∈ Π }.

Given a set of graphs S representing the possible graphs, the previous definition generalizes
to the uninterpreted complex of the oblivious predicate HO generated by S.

Definition 4.19 (Uninterpreted complex of an oblivious predicate). Let HO be an oblivious
predicate generated by a set of graphs S. Then the uninterpreted complex of A is CHO ,
the complex whose facets are exactly the {σG | G ∈ S}.

4.4.2 Uninterpreted complexes of closed-above predicates

It so happens that closed-above predicates give rise to uninterpreted complex that are easy to
define and study. Indeed, they are unions of pseudospheres, where pseudospheres are colored
complexes topologically equivalent to n-spheres. These pseudospheres have already been used
in the literature to study multiple predicates of computation [19, Chap. 13].

Definition 4.20 (Pseudospheres [19, Def 13.3.1]). Let V1, V2, ..., Vn be sets. Then the pseu-
dosphere complex ϕ(Π;Vi | i ∈ [1, n]) ,

• ∀i,∀v ∈ Vi : (Pi, v) is a vertex of C.

• ∀J ⊆ [1, n] : {(Pj , vj) | j ∈ J, vj ∈ Vj} is a simplex of C iff all Pj are distinct.

These complexes work like a generalization of complete bipartite graphs in n dimensions.
Recall that a complete bipartite graph is a graph that can be split into two sets of nodes, the
nodes of each set not linked between them and each node of one set linked to all nodes of the
other set. For example, Figure 4.3a is a bipartite graph.

Now a pseudosphere is the same, except that nodes can be partitioned into n sets, no
simplex contains more than one element of each set as a vertex, and all the simplexes built
from one element of each set are in the complex. Figure 4.3b is an example of a pseudosphere
built from processes P1, P2, P3, and the three sets V1 = {v1, v2}, V2 = {v1, v2} and V3 = {v}.

Among other things, pseudospheres are closed under intersection, and are (n−2) connected.

Lemma 4.21 (Intersection of pseudospheres [19, Fact 13.3.4]). ϕ(Π;Ui | i ∈ [1, n])∩ϕ(Π;Vi |
i ∈ [1, n]) = ϕ(Π;Ui ∩ Vi | i ∈ [1, n]).



4.4. ELEMENTS OF COMBINATORIAL TOPOLOGY 107

p1

p2

p3

p4

p5

p6

(a) Bipartite
graph

(P1, v1)

(P1, v2)(P2, v1)

(P2, v2)

(P3, v)

(b) Pseudosphere

Figure 4.3: A bipartite graph and a pseudosphere

One advantage of pseudosphere is that they have high connectivity [19, Def. 3.5.6]. Intu-
itively, connectivity concerns the (non-)existence of high-dimensional generalization of holes
in the complexes. Since pseudospheres are topologically equivalent to spheres [19, Sect. 13.3],
they only have these holes in their highest dimension.

Lemma 4.22 (Connectivity of pseudospheres [19, Cor. 13.3.7]). ϕ(Π;Vi | i ∈ [1, n]) is (n−2)-
connected, where n , |{i ∈ [1, n] | Vi 6= ∅}|.

The connectivity of the uninterpreted complex for a simple closed-above predicate follows,
because such a complex is a pseudosphere. Intuitively, for any process p, its possible views
are exactly the upward closure of its view in the defining graph G. Then the n-simplexes of
the uninterpreted complex are exactly the simplex one can build with one such view for each
process.

Lemma 4.23 (Uninterpreted complex of a simple closed-above predicate is a pseudosphere).
Let HO be a simple closed-above predicate generated by G. Then CHO = ϕ(Π; {S | InG(Pi) ⊆
S ⊆ Π} | i ∈ [1, n]).

Proof. • (⊆). Let σ be a n-simplex of CHO. By definition of CHO, it is the uninterpreted
simplex of a graph H ∈↑G. This in turn means that ∀p ∈ Π : viewσ(p) = InH(p) ⊇
InG(p).
Thus σ = {(Pi, InH(Pi)) | i ∈ [1, n]} ⊆ ϕ(Π; {S | InG(Pi) ⊆ S ⊆ Π} | i ∈ [1, n]).

• (⊇). Let σ be a n-simplex of ϕ(Π; {S | InG(Pi) ⊆ S ⊆ Π} | i ∈ [1, n]). Then ∀p ∈
Π : viewσ(p) ⊇ InG(p). Thus σ is the uninterpreted simplex of a graph H such that
∀p ∈ Π : InH(p) ⊇ InG(p).
We conclude that H ∈↑G and thus that σ ∈ CHO

It follows instantly that the uninterpreted complexes of simple closed-above predicates are
(|Π| − 2)-connected.

Corollary 4.24 (Connectivity of the uninterpreted complex of a simple closed-above pred-
icate). Let HO be a simple closed-above predicate generated by G. Then CHO is (|Π| − 2)-
connected.



108 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

From this corollary and the closure of pseudospheres by intersection, let’s now deduce a
similar characterization of the connectivity for general closed-above predicates.

But to do so the main tool for studying connectivity of simplicial complexes needs to be
introduced: the nerve lemma. This result uses a cover of a complex: a set of subcomplexes
such that their union gives the initial complex.

Intuitively, the nerve lemma says that if you provide a cover of a complex that is "nice
enough", then the connectivity of the initial complex can be deduced from the connectivity of
the nerve complex, which has a vertex for each element of the cover and simplexes for sets of
vertexes with non empty intersections.

Definition 4.25 (Nerve complex). Let C be a simplicial complex, (Ci)i∈I a cover of C. Then
the nerve complex of this cover, N (Ci | I) , the complex generated by

• the vertices are the Ci;

• and the simplexes are the sets {Ci | i ∈ J} for J ⊆ I such that ⋂
i∈J

Ci 6= ∅

The nerve complex captures how the elements of the cover are glued together. What
is needed for the nerve lemma is that the cover doesn’t hide any hole; if it did, then the
correspondence between the connectivity would be lost.

Lemma 4.26 (Nerve lemma [73, Thm 15.24]). Let C be a simplicial complex, (Ci)i∈I a cover
of C and k ≥ 0. Then∀J ⊆ I :

 dim( ⋂
i ∈J

Ci) ≥ (k − |J |+ 1)

∧
⋂
i ∈J

Ci = ∅




=⇒ (C is k-connected ⇐⇒ N (Ci | I) is k-connected).

Now the connectivity of uninterpreted complexes for general closed-above predicates fol-
lows.

Theorem 4.27 (Connectivity of the uninterpreted complex of a closed-above predicate). Let
HO be a closed-above predicate generated by S. Then CHO is (|Π| − 2)-connected.

Proof. From the proof of Theorem 4.23, we know that CHO is a union of pseudospheres:
CHO = ⋃

G∈S
CG. We want to apply the nerve lemma to this cover. First, by Theorem 4.24,

CG is (n− 2)-connected.
As for the intersection of any set I of CG, we have two properties. First, it cannot be

empty, since all CG must contain the uninterpreted simplex of the complete graph on Π, by
definition of ↑G. This gives us that the nerve complex is a simplex, and thus ∞-connected.

And second, the intersection is also a pseudosphere, by application of Lemma 4.21. Indeed,
these are intersections of pseudospheres with the same processes which have an non-empty
intersection for each color: the view of this process in the complete graph.

We can thus conclude by application of the nerve lemma and Theorem 4.24.

4.4.3 Interpretation of uninterpreted complexes

Uninterpreted complexes only go so far; at some point, we need to consider initial values.



4.4. ELEMENTS OF COMBINATORIAL TOPOLOGY 109

Definition 4.28 (Interpretation of uninterpreted simplex). Let σ be an uninterpreted simplex
on Π and τ be a (n− 1)-simplex colored by Π. Then the interpretation of σ on τ , σ(τ) ,
{(p, V ) | p ∈ Π ∧ (v ∈ V =⇒ (∃q ∈ viewσ(p) : v = viewτ (q)))}

Then the same intuition can be applied to a full uninterpreted complex.

Definition 4.29 (Interpretation of uninterpreted complex). Let A be an uninterpreted com-
plex on Π and I be a pure (n− 1) complex colored by Π. Then the interpretation of A on
I, A(I) , ⋃

τ a facet of I
σ a facet of A

σ(τ)

These interpretations give protocol complexes, on which known result on computability
are applicable.

4.4.4 A Powerful Tool

On the combinatorial topology front, our results leverage two main tools: the impossibility
result on k-set agreement based on connectivity [19, Thm. 10.3.1], and a way to compute the
connectivity of a complex from the way it is built. This section develops the second idea.

First, let’s define the concept of shellability. This builds on the boundary complex of a
simplex, which is simply the complex formed by the faces of the simplex.

Definition 4.30 (Boundary complex). Let σ be a simplex. Then the boundary complex of σ
, the complex formed by all proper faces of σ.

Definition 4.31 (Shellability). Let A be a pure complex of dimension d. Then A is shellable
, there is an ordering ϕ1, . . . , ϕr of its facets such that for every 1 ≤ t ≤ r − 1,(

t⋃
i=1

ϕi

)
∩ ϕt+1

is a pure subcomplex of dimension d−1 of the boundary complex of ϕt+1, i.e., of skeld−1 ϕt+1.
The ordering is a shelling order.

The intuition here is that the complex is the union of simplexes of dimension d, and there
is an order in which to add simplexes, so that the new simplex is connected to the rest by d−1
simplexes, some of its own facets. In the concrete case of 2-simplexes (triangles) for example,
they must be connected to the rest by 1-simplexes (edges).

Here, unions and intersections apply to the complexes induced by the facet and all its
faces.

For example, the complex in Figure 4.4a is shellable, but the one in Figure 4.4b is not.
Given a shelling order ϕ1, . . . , ϕr of a complex A, (⋃ti=1 ϕi) ∩ ϕt+1 is the union of the

complexes induced by some (d− 1)-faces τ1, . . . , τs of ϕt+1, by definition of shellability. Each
τj is a face of a facet σj of ∪ti=1ϕi, hence ϕt+1 and σj share a (d− 1)-face. Then,(

t⋃
i=1

ϕi

)
∩ ϕt+1 =

s⋃
j=1

(ϕt+1 ∩ σj).

The following technical result also serves in the following proofs.



110 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

p1

p2

p3

p4

(a) Shellable complex

p1

p2

p3

p4

p5

(b) Not-shellable
complex

Figure 4.4: Examples of a complex that is shellable and one that is not

Lemma 4.32 (Shellability of simplex boundary [19, Thm 13.2.2]). Let A be a pure (d − 1)-
dimensional sub-complex of the boundary complex of a simplex of dimension d. Then A is
shellable, and any sequence of its facets is a shelling order for A.

Finally, the last piece of the puzzle is this straightforward corollary of the nerve lemma for
a cover with two elements.

Corollary 4.33 (Two elements nerve lemma). Let C and K be k-connected complexes. If
C ∩K is (k − 1)-connected, then C ∪K is k-connected.

Now I can state the main technical result of the section. It extends the result from
Castañeda et al. [66] and adapts it to the interpretation of complexes needed here. While
Castañeda et al. studied the complex given by the interpretation of a single graph (to capture
predicates like LOCAL and CONGEST [25]), what matters care about the complex resulting
of the interpretation of a set of graphs.

If each input simplex gets sent into a complex, and both the output complexes and the
mapping are "nice", then the interpreted complex is highly connected.

Lemma 4.34. Let A be a pure shellable complex of dimension d, B a complex, (Bi)i∈I a cover
of B, and ` ≥ 0 an integer. Suppose that there is a bijection α between the facets of A and the
elements of (Bi)i∈I such that:

1. For every facet ϕ′ of A and every pure d-subcomplex ⋃ti=1 ϕi ⊆ A satisfying that(⋃t
i=1 ϕi

)
∩ ϕ′ = ⋃s

i=1 (ϕ′ ∩ σi) for some of A’s facets σ1, . . . , σs, with each σi and ϕ′

sharing a (d− 1)-face, it holds that
(⋃t

i=1 α(ϕi)
)
∩ α(ϕ′) = ⋃s

i=1 (α(ϕ′) ∩ α(σi)).

2. For every t ≥ 0 and every collection ϕ0, ϕ1, . . . , ϕt of t+ 1 facets of A with each ϕi and
ϕ0 sharing a (d− 1)-face, it holds that ⋂ti=0 α(ϕi) is least (`− t)-connected.

Then, B is `-connected.

Proof. We prove the claim by induction on `.

• (Base case) ` = 0. We need to prove that B is 0-connected, by induction on the length
of a shelling order of A. Fix a shelling order ϕ1, . . . , ϕm of A, so B = ⋃m

i=1 α(ϕi).

– (Base case) B = α(ϕ1). By hypothesis (2), for the case t = 0, B = α(ϕ1) is at
least l − t = 0-connected.



4.4. ELEMENTS OF COMBINATORIAL TOPOLOGY 111

– (Induction step) Suppose that ⋃r−1
i=1 α(ϕi) is 0-connected, for some 2 ≤ r < m.

We have that α(ϕr) is 0-connected by hypothesis (2), as above. We show that(⋃r−1
i=1 α(ϕi)

)
∩ α(ϕr) is (−1)-connected, namely, non-empty, and then Corol-

lary 4.33 imply that B =
(⋃r−1

i=1 α(ϕi)
)
∪ α(ϕr) is 0-connected. By definition of

shellability, (
r−1⋃
i=1

ϕi

)
∩ ϕr = τ1 ∪ . . . ∪ τs,

where each τj is a face of dimension (d− 1) of ϕr. For each τj there is a facet σj of⋃r−1
i=1 ϕi such that τj ⊂ σj . Thus, ϕr and σj share a (d− 1)-face and(

r−1⋃
i=1

ϕi

)
∩ ϕr =

s⋃
j=1

(ϕr ∩ σj) .

By hypothesis (1) we have that(
r−1⋃
i=1

α(ϕi)
)
∩ α(ϕr) =

s⋃
j=1

(α(ϕr) ∩ α(σj)) .

Each σj shares a (d − 1)-face with ϕr, so hypothesis (2), with t = 1, implies that
α(ϕr) ∩ α(σj) is at least (−1)-connected, which implies that

(⋃r−1
i=1 α(ϕi)

)
∩ α(ϕr)

is non-empty.

• (Induction step) Suppose that the statement of the theorem holds for ` − 1, and
consider a shelling order ϕ1, . . . , ϕm of A. Our aim is to show that B = ⋃m

i=1 α(ϕi) is
`-connected.
As in the base case, we proceed by induction on the length of the shelling order.

– (Base case) B = α(ϕ1). By hypothesis (2), for the case t = 0, B = α(ϕ1) is at
least `− 0 = `-connected.

– (Induction step) Suppose that ⋃r−1
i=1 α(ϕi) is `-connected, for some 2 ≤ r < m.

We have that α(ϕr) is `-connected by hypothesis (2) as above. If we show that(⋃r−1
i=1 α(ϕi)

)
∩ α(ϕr) is (` − 1)-connected, Corollary 4.33 implies that ⋃ri=1 α(ϕi)

is `-connected.
To do so, we use the theorem for `− 1. As seen before, there are facets σ1, . . . , σs
of ⋃r−1

i=1 ϕi such that each σj and ϕr share a (d− 1)-face,(
r−1⋃
i=1

ϕi

)
∩ ϕr =

s⋃
j=1

(ϕr ∩ σj) and
(
r−1⋃
i=1

α(ϕi)
)
∩ α(ϕr) =

s⋃
j=1

(α(ϕr) ∩ α(σj)) .

Let B′ = ⋃s
j=1 (α(ϕr) ∩ α(σj)). Let λ1, . . . , λs′ be simplexes among the σj ’s such

that α(ϕr) ∩ α(λi) 6= α(ϕr) ∩ α(λi′) for i 6= i′, and the α(ϕr) ∩ α(λi) still form a
cover of B′: B′ = ⋃s′

i=1 (α(ϕr) ∩ α(λi)). Let A′ = ⋃s′
i=1 (ϕr ∩ λi). Note that A′ is

pure of dimension d− 1 and is a subcomplex of the boundary complex of ϕr.
By Lemma 4.32, A′ is shellable. The facets of A′ are the intersections ϕr ∩ λi.
Consider the bijection β(ϕr ∩ λi) = α(ϕr) ∩ α(λi) between the facets of A′ and



112 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

our cover of B′. Now, let ϕr ∩ λ be any facet of A′ and ⋃m′i=1 (ϕr ∩ λ′i) be any pure
(d−1)-subcomplex of A′. Note that every pair of facets of A′ share a (d−2)-face as
both are (d−1)-faces of ϕr. Then, ϕr∩λ and each ϕr∩λ′i share a face of dimension
d− 2, and thus we can writem′⋃

i=1

(
ϕr ∩ λ′i

) ∩ (ϕr ∩ λ) =
m′⋃
i=1

(
(ϕr ∩ λ) ∩ (ϕr ∩ λ′i)

)
and m′⋃

i=1
β(ϕr ∩ λ′i)

 ∩ β(ϕr ∩ λ) =
m′⋃
i=1

(
β(ϕr ∩ λ) ∩ β(ϕr ∩ λ′i)

)
.

We conclude that hypothesis (1) of the theorem holds for A′, B′ and β.
Finally, consider any collection ϕr∩λ′0, . . . , ϕr∩λ′t′ of t′+1 facets of A′. As already
noted, each of them and the first one share a (d− 2)-face. We have that

τ =
t′⋂
i=0

β(ϕr ∩ λ′i) =
t′⋂
i=0

(α(ϕr) ∩ α(λ′i)) = α(ϕr) ∩
t′⋂
i=0

α(λ′i).

As said above, the λ′i’s are facets of A and each of them and ϕr share a (d−1)-face.
By hypothesis (2) with t = t′+1, τ is of at least (`−t) = (`−(t′+1)) = ((`−1)−t′)-
connected. Then, hypothesis (2) of the theorem holds for A′, B′, β and `− 1.
We have all hypothesis to use the theorem with A′ and B′ and `− 1. Therefore, B′
is (`− 1)-connected, and then ∪ri=1α(ϕi) is `-connected.

4.5 One round lower bounds: a touch of topology

As before, we start with the simple closed-above case, where the predicate is the closure of a
single graph. In this case the tight lower bound follows from Castañeda et al. [66, Thm 5.1],
as mentioned above.

Theorem 4.35 (Lower bound on k-set agreement for simple closed-above predicates). Let
HO a simple closed-above predicate generated by the graph G. Let k ≤ γ(G). Then k-set
agreement is not solvable on HO in a single round.

Let’s thus focus on general closed-above predicates. Here the underlying structure of the
protocol complex is leveraged through two tools: the main lemma from Section 4.4.4, as well
as two graph parameters: the distributed domination number over a set of graphs, and the
max-covering numbers of a set of graphs.

Definition 4.36 (Distributed domination number of a set of graphs). Let S be a set of graphs.
Then the distributed domination number S,

γdist(S) , min

i > 0

∣∣∣∣∣∣∣∣
∀P ⊆ Π,∀Si ⊆ S :
(|P | = i ∧ |Si| = min(i, |S|))
=⇒ ⋃

G∈Si

OutG(P ) = Π

.



4.5. ONE ROUND LOWER BOUNDS: A TOUCH OF TOPOLOGY 113

p1 p2

p3p4

p1 p2

p3p4

Figure 4.5: The two graphs generating a predicate with different domination numbers

Figure 4.5 gives a set S of graphs for which γeq(S) and γdist(S) differ. Indeed, γeq(S)
equals 3 in this context, because some sets of two processes (for example {p1, p2} is not a
dominating set in both graphs). On the other hand, γdist(S) equals 2. That’s because any set
of two processes reach all processes when considering the neighbors in both graphs.

So a set of γeq(S) processes dominates each graph of S separately, whereas a set of γdist(S)
processes might not dominate any graph of S, but it dominates every subset of γdist(S) graphs
of S when all the neighbors in all the graphs are considered together. Thus γdist(S) ≤ γeq(S).
Fitting, considering the former is used in lower bounds and the latter in upper bounds.

Next, the max-covering numbers are quite subtle. For i < γdist(S), the i-th max-covering
number of S is the maximum number of processes hearing a set of i processes, summed over i
graphs in S. That is, the max-covering numbers capture how much values can be disseminated
in the best case. They serve in lower bounds by giving a best case scenario to focus on for
proving impossibility.

Definition 4.37 (Max covering numbers of a set of graphs). Let S be a set of graphs and
i < γdist(S). Then the i-th max-covering number of S,
max-covi(S) , max

P⊆Π,|P |=i
Si⊆S,|Si|=min(i,|S|)⋃

G∈Si

OutG(P )6=Π

|( ⋃
G∈Si

OutG(P ))|.

We also define the i-th max-covering coefficients on S,

Mi(S) ,
{ ⌊

n−i−1
max-covi(S)−i

⌋
if max-covi(S) > i

n− i if max-covi(S) = i

Let’s now state the lower bound for general closed-above predicate. Notice that there is
an additional constraint: the closed-above predicate is not generated only by the clique. If it
was, then the l of the lower bound could be equal to −1 (because the γdist(S) of a clique is 1)
and thus the bound would talk about 0-set agreement, which doesn’t exists.

Since every k-set agreement is trivially solvable on the clique, this constraint does not
reduce the application of the bound.

Theorem 4.38 (Lower bound on k-set agreement for general closed-above predicates). Let
HO be a closed-above predicate generated by the set of graphs S, such that S is not the singleton
set of the clique..
Let l = min(γdist(S), min

t∈[1,γdist(S)[
t+Mt(S))− 2. Then (l+ 1)-set agreement is not solvable on

HO in a single round.

Proof. It is known that when the protocol complex is k-connected, non trivial k+ 1-set agree-
ment is impossible. Herlihy et al. [19] gives an example derivation for colorless protocols, and



114 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

Castañeda et al. [66] give one for colored protocols. We thus prove that the protocol complex
generated by HO after one round is l-connected.

As we said, we want to apply Lemma 4.34. Our A is the pseudosphere Ψ(Π, [0, k]), our B
is CHO(A) and our mapping α sends a facet σ of A on CHO(σ) = ⋃

G∈S
CG(σ).

• Let ϕ′ be a facet of A and take a pure d-subcomplex ⋃ti=1 ϕi ⊆ A satisfying that(⋃t
i=1 ϕi

)
∩ ϕ′ = ⋃s

i=1 (σi ∩ ϕ′) for some of A’s facets σ1, . . . , σs, with each σi and ϕ′

sharing a (d− 1)-face.

We want to show that
(⋃t

i=1 α(ϕi)
)
∩ α(ϕ′) = ⋃s

i=1 (α(σi) ∩ α(ϕ′)).

– Let τ be a simplex of
(⋃t

i=1 α(ϕi)
)
∩ α(ϕ′). Since

(⋃t
i=1 α(ϕi)

)
∩ α(ϕ′) =⋃t

i=1 (α(ϕi) ∩ α(ϕ′)) by distributivity of intersection on union, we have some i ∈
[1, t] such that τ is a simplex of α(ϕi) ∩ α(ϕ′).
Now, α sends a simplex σ to CHO(σ); thus α(ϕ′) ∩ α(ϕi) = CHO(ϕ′) ∩ CHO(ϕi) =
( ⋃
G∈S

CG(ϕ′))∩ ( ⋃
G∈S

CG(ϕi)) = ⋃
G,H∈S

CG(ϕ′)∩CH(σi). Hence τ being a simplex of

α(ϕi) ∩ α(ϕ′) means that ∃G,H ∈ S for which every process of τ has its view in
both CG(ϕi) and CH(ϕ′). And a view is completely defined by the value received
from other processes. That is, ∀(p, v) ∈ τ,∀(q, vq) ∈ v : (q, vq) ∈ ϕi ∩ ϕ′.
By our equation

(⋃t
i=1 ϕi

)
∩ϕ′ = ⋃s

i=1 (σi ∩ ϕ′) there is l ∈ [1, s] such that ϕi∩ϕ′ ⊆
σl ∩ ϕ′. Then all (q, vq) ∈ v are also in σl ∩ ϕ′. We conclude that all (q, vq) ∈ v are
in σl and in ϕ′, and thus τ is a simplex of α(σl) ∩ α(ϕ′).

– Let τ be a simplex of ⋃si=1 (α(σi) ∩ α(ϕ′)). Thus there is some i ∈ [1, s] such that
τ is a simplex of α(σi) ∩ α(ϕ′). That is, ∀(p, v) ∈ τ,∀(q, vq) ∈ v : (q, vq) ∈ σi ∩ ϕ′.
Then, by our equation

(⋃t
i=1 ϕi

)
∩ ϕ′ = ⋃s

i=1 (σi ∩ ϕ′), there is l ∈ [1, t] such that
∀(p, v) ∈ τ,∀(q, vq) ∈ v : (q, vq) ∈ ϕl. We conclude that all (q, vq) ∈ v are in ϕl and
in ϕ′, and thus τ is a simplex of

(⋃t
i=1 α(ϕi)

)
∩ α(ϕ′).

• Now we want to study the connectivity of the intersection of well-chosen facets. Let
t ≥ 0 and ϕ0, ϕ1, . . . , ϕt be t+ 1 facets of A with each ϕi and ϕ0 sharing a (d− 1)-face.
We want to prove that ⋂ti=0 α(ϕi) is l − t connected.

Because l ≤ γdist(S)−2, we only have to consider t < γdist(S), because l−γdist(S) ≤ −2,
and thus in the case t ≥ γdist(S), there is no constraint to satisfy on the connectivity of
the intersection.

Now, each α(ϕi) is in fact CHO(ϕi) = ⋃
G∈S

CG(ϕi). We start by developing the CHO(ϕi)

into the union of the CG(ϕi) and applying the distributivity of intersection over union
on this big intersection:⋂

i∈[0,t]
CHO(ϕi) = ⋂

i∈[0,t]

⋃
G∈S

CG(ϕi)

= ⋃
G0,G1,...,Gt∈S

⋂
i∈[0,t]

CGi(ϕi)

As always, we naturally get a cover of our space. We thus use the Nerve Lemma.



4.5. ONE ROUND LOWER BOUNDS: A TOUCH OF TOPOLOGY 115

This requires first a computation of connectivity for the ⋂ti=0CGi(ϕi). We are taking
the intersection of pseudospheres, which gives a new pseudosphere by Lemma 4.21. To
compute its connectivity, we need to now how many processes end up with a non-empty
set of view, by Lemma 4.22.

Let us assume that the ϕi are all distinct; if not we can remove the duplicate and start
with a lower t. Then, because they all intersect with ϕ0 on a (d − 1) face, we have⋂t
i=0 ϕi of dim (d− t). That is, in these input simplexes, there are (d− t) processes with

the same input value across all ϕi. Or equivalently, there are t processes with different
values for some ϕi.

Let P be the set of t processes with sometimes different initial values across the ϕi. Then
the processes disappearing from ⋂t

i=0CGi(ϕi) are the ones receiving the values from P .

But for t < γdist(S), we know either all processes receive the values from P , or at
most max-covt(S) do. Thus ⋂ti=0CGi(ϕi) is either empty or a pseudosphere with (n −
max-covt(S)) processes with a non empty set of views. It is therefore empty or (n −
max-covt(S)− 2)-connected by Lemma 4.22.

Let us index the subsets of S of size t whose intersection is non-empty. Then let J be
a set of index of size ≤ Mt(S). We now show that ⋂

j∈J

⋂
i∈[0,t]
Gi∈Sj

CGi(ϕi) is either empty or

(Mt(S)− 2− |J |+ 1) = (Mt(S)− |J | − 1)-connected.

If P dominates any set Sj for j ∈ J , then the intersection for this set is empty, and thus
the intersection of the intersections of J is also empty. Let us thus assume from this
point that P does not dominate any set Sj with j ∈ J .

Then in each G ∈ Sj , P talks to at most max-covt(S) processes. Of these, there are
max-covt(S) − t who are not in P . This means that in the worst case, P talks to
|J |(max-covt(S)−t) processes not in P . Thus in this worst case, the number of processes
hearing the views of P is t+ |J |(max-covt(S)− t).

Therefore, the intersection is (n− t− |J |(max-covt(S)− t)− 2)-connected.

First we treat the case where max-covt(S) = t, and thus where Mt(S) = n − t. We
have an intersection that is (n− t− 2)-connected, and n− t− 2 ≥ n− t− |J | − 1, since
|J | ≥ 1. This actually holds for any J, even when |J | > Mt(S). Hence the nerve complex
of our cover in this case is a simplex, and thus ∞-connected. We conclude by the nerve
lemma 4.26 that ⋂ti=0 α(ϕi) is (Mt(S)− 2)-connected.

Now let us turn to the case wheremax-covt(S) > t. Notice that n−t−|J |(max-covt(S)−
t) − 2 = (n − t − 1) − |J |(max-covt(S) − t) − 1 ≥ (max-covt(S) − t)(Mt(S) − |J |) − 1.
And since Mt(S) ≥ |J | and max-covt(S) > t, we have n− t−|J |(max-covt(S)− t)− 2 ≥
Mt(S) − |J | − 1. Among other things, this means that ∀J such that |J | = Mt(S),⋂
j∈J

⋂
i∈[0,t]
Gi∈Sj

CGi(ϕi) is (−1)-connected and thus not empty.

This implies that the nerve complex contains theMt(S) skeleton of a higher dimensional
simplex. And such a skeleton is at least (Mt(S) − 1)-connected. We conclude by the
nerve lemma 4.26 that ⋂ti=0 α(ϕi) is (Mt(S)− 2)-connected.



116 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

For t < γdist(S), we thus have that ⋂ti=0 α(ϕi) is (Mt(S) − 2)-connected. And since
(t+Mt(S)− 2) ≥ l, we have Mt(S)− 2 ≥ l− t, and thus ⋂ti=0 α(ϕi) is (l− t)-connected.

The two conditions of Lemma 4.34 are satisfied; we conclude that CHO(A) is l-connected,
and thus k-set agreement is unsolvable in one round on predicate HO.

The term depending on γdist(S) in the lower bound serves when the max-covering numbers
are not sufficient to distinguish adversaries with different properties. Consider for example the
symmetric predicates generated by all unions of s stars, with s ≤ n. Then for those graphs,
for t < γdist(S), we have max-covt(S) = t, and thus Mt(S) = n− t. Hence the minimum over
the t+Mt(S)− 2 is n− 2.

But this would mean that (n − 1)-set agreement is impossible for s < n, whereas we can
clearly solve 2-set agreement for s = n− 1, for example. What depends on s is γdist(S) itself.
More precisely, γdist(S) = n− s + 1, because given P , we can consider only the graph where
the s centers of stars are in Π \ P , up until the point where |P | > n− s.

Hence our lower bound shows that for the symmetric union of s stars, (n−s)-set agreement
is impossible in one round. Given that our upper bounds above tell that (n − s + 1)-set
agreement is possible in one round for this predicate, the bound is tight.

Finally, the bound can be specialized for symmetric predicates.

Corollary 4.39 (Lower bounds for symmetric closed-above pred-
icate). Let G be a graph different than the clique. Let l =

min
(
γdist(Sym(G)), min

t∈[1,γdist(Sym(G))[

(
t+

⌊
n−t−1

t(max-covt({G})−t)

⌋
if max-covt({G}) > t

if max-covt({G}) = t

))
−2

Then (l + 1)-set agreement is not solvable on the predicate generated by Sym(↑G) in a single
round.

Proof. We simply computeM t(Sym(G)) fromMt({G}). First, notice that ifmax-covt({G}) =
t, then no other process hears any set of t processes. This is invariant by permutation, and
thus max-covt(S) = t, and Mt(Sym(G)) = n− t.

We now turn to the case max-covt({G}) = t. In the worst case, we have a P ⊆ Π
of size t that hits max-covt({G}) processes in G. Of these, max-covt({G}) − t processes
are not in P . By permutation, we can take, in the worst case, t − 1 other graphs
where these max-covt({G}) − t are completely different. That is, in the worst case, P
touches max-covt(Sym(G)) = t + t(max-covt({G}) − t) processes. And thus Mt(Sym(G) =⌊

n−t−1
max-covt(Sym(G))−t

⌋
=
⌊

n−t−1
t(max-covt(G)−t)

⌋
.

Notice that all these lower bounds are valid for general algorithms, not only oblivious ones.
The reason is that a one round full information protocol is an oblivious algorithm.

4.6 Multiple rounds

Given that the focus on oblivious algorithms, a natural approach to extending the lower bounds
to the multiple rounds case is to look at the product of graphs. By product, I mean the graph
of the paths with one edge per graph. Thus the products of r graphs capture who will hear
who after r corresponding communication rounds.



4.6. MULTIPLE ROUNDS 117

Definition 4.40 (Graph path product). Let G and H be graphs with auto-loops (∀v ∈ Π :
(v, v) ∈ E(G) ∧ (v, v) ∈ E(H)). Then their graph path product G ◦H , the graph (Π, E)
such that ∀u, v ∈ Π : (u, v) ∈ Π =⇒ ∃w ∈ Π : (u,w) ∈ E(G) ∧ (w, v) ∈ E(H).

Since the result is still a graph, the lower bound for one round still applies. At least, if
the resulting graph still satisfy the hypotheses of the lower bounds. It does, although product
doesn’t maintain closure-above. This subtlety is explained in the next subsection.

4.6.1 Closure-above is not invariant by product, but its still works

What is the pitfall mentioned above? Quite simply, that the product of two closed-above
predicates does not necessarily gives a closed-above predicate. This follows from the fact that
the closure-above of a product of graphs doesn’t always equal the product of the closure-above
of the graphs.

Let’s take an example: the product of a cycle with itself.

p1 p2

p3

p4p5

p6 ◦

p1 p2

p3

p4p5

p6 =

p1 p2

p3

p4p5

p6

Then the following graph cannot be built by extending the cycles and taking the product:

p1 p2

p3

p4p5

p6

Why? Simply put, adding the new edge to either of the two cycles necessarily creates other
edges in the product. Adding an edge from p2 to any other node than p3 or p4 also creates
new edges; so does adding an edge to p4 and then an edge from p4 to p6, or an edge from p3
to p6 in the second graph.

Hence the product of the closure above of this cycle with itself is not the closure-above of
the squared cycle. To put it differently, closure-above is not invariant by the product operation.

Nonetheless, the bell does not toll for our hopes of extending the bounds. What is used in
the lower bound proofs above is not closure-above itself, but its consequences: being a union of
pseudospheres containing the full simplex, such that for each pseudosphere, all graphs contain
the smallest graph.

All three properties are present in a specific subset of the product of two simple closed-
above predicates: all products where edges might be added to the last graph in the product
but not to the other. Each added edge only alters the view of its destination, since it is



118 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

in the second graph, and multiple added edges don’t interfere because they are all added to
the same graph. Hence the views of processes can change one at a time, and thus give a
pseudosphere. Since adding no edge gives the original product and adding all missing edges
gives the clique, the other two properties also hold Then taking this subset of the product of
two general closed-above predicates result in a union of pseudosphres, one for each product of
the underlying graphs.

Therefore relevant subcomplexes exists within the product of closed-above predicates, and
then the lower bounds only depend on the properties of the underlying product of graphs.

4.6.2 Upper bounds for multiple rounds

Even though the section before just explained how to deal with lower bounds for multiple
rounds, let’s still start by giving upper bounds for multiple rounds. This is for the same
reason as in the one round case: the upper-bounds require no combinatorial topology, and
they allow us to introduce concepts needed for the lower bounds.

The algorithm is the same than for a single round, except that the exchange of values runs
for r rounds. Note that this algorithm is parameterized by the number of rounds it uses.

Definition 4.41 (Multiple rounds k-set agreement algorithm). Let r > 0. Assume that the
set of initial values to k-set agreement is totally ordered. Then the r round k-set agreement
algorithm r − rounds , the algorithm where each process

• broadcasts the set of pairs (process,initial value) that it knows for r rounds;

• and then decides the minimum value it received.

First, a little preliminary result is required for upper bounds: that the product of closed-
above predicates is included in the closure-above of the product.

Lemma 4.42 (Product and inclusion for closed-above). Let G and H be two graphs. Then
↑G◦ ↑H ⊆↑(G ◦ H).

Proof. Let K ∈↑G◦ ↑H. Thus ∃G′ ∈↑G, ∃H ′ ∈↑H : K = G′ ◦ H ′. Let u, v ∈ Π such that
(u, v) ∈ G ◦H. We show that (u, v) ∈ K; this will entail that K ∈↑(G ◦H).

Because (u, v) ∈ G◦H, ∃w ∈ Π : (u,w) ∈ E(G)∧(w, v) ∈ E(H). But G′ ∈↑G andH ′ ∈↑H,
therefore (u,w) ∈ E(G′) ∧ (w, v) ∈ E(H ′). We conclude that (u, v) ∈ G′ ◦H ′ = K.

Hence taking the closure-above of the products of our graphs over-approximate the actual
predicate after r rounds. And thus algorithms working on these approximations work on the
actual predicate.

Now, let’s start with simple closed-above predicates. Just like for the one round case, they
are completely characterized by the domination number of their underlying graph.

Definition 4.43 (Multiple rounds k-set agreement algorithm). Let r > 0. Assume that
the set of initial values to k-set agreement is totally ordered. Then the r round k-set
agreement algorithm parametrized by a set of process, r− roundsParam , ∀S ⊆ Π,
r − roundsParam(S) is the algorithm where each process

• broadcasts the set of pairs (process,initial value) that it knows for r rounds;



4.6. MULTIPLE ROUNDS 119

• and decides the minimum value it received from a process of S. If no such value were
received, it decides the minimal value it received from any process.

Theorem 4.44 (Upper bound (multiple rounds) for simple closed-above predicates). Let HO
be a simple closed-above predicate generated by the graph G. Let r > 0 and D be a minimum
dominating set of Gr. Then Algorithm r− roundsParam(D) solves γ(Gr)-set agreement in r
rounds on HO.

Proof. Because r − roundsParam(D) is an oblivious algorithm, at round r every process p
takes its decision from only the pairs of (process, initial values) it has received in the r rounds.
This is equivalent to saying that p received all the initial values of its incoming neighbors in
the product of the r communication graphs.

By Lemma 4.42, this product of graph is included in ↑Gr. Thus every processe receives at
least the initial value from its incoming neighbors in Gr. Since D is a dominating set of Gr,
this means every process decides an initial value from a process of D. And since |D| = γ(()Gr),
at most γ(()Gr) values are decided.

The algorithm thus solves γ(()Gr)-set agreement on HO.

But for general closed-above predicates, one cannot use the domination number itself,
because one cannot know which of the underlying graphs will be there. As in the one round
case, these bounds rely on the equal-domination number and covering numbers.

Theorem 4.45 (Upper bound (multiple rounds) on k-set agreement by γeq(S) for general
closed-above models). Let HO be a general closed-above predicate generated by the set of
graphs S. Let r > 0. Then Algorithm r− rounds solves γeq(Sr)-set agreement in r rounds on
HO.

Proof. Because r − rounds is an oblivious algorithm, at round r every process p takes its
decision from only the pairs of (process, initial values) it has received in the r rounds. This
is equivalent to saying that p received all the initial values of its incoming neighbors in the
product of the r communication graphs.

By Lemma 4.42, this product of graph is included in ⋃
G1,...,Gr∈S

↑ ©r
i=1Gi =↑ Sr. Thus

there is a graph G in Sr such that every process receives at least the initial value from its
incoming neighbors in G.

Let P be a set of γeq(Sr) processes with the smallest initial values. They have thus at
most γeq(Sr) distinct initial values. By Definition 4.10 of γeq(Sr), P dominates every graph in
Sr, including G. Thus taking the minimum value received will result in deciding one of those
initial values, and thus one of at most γeq(Sr) values.

We conclude that the algorithm solves γeq(Sr)-set agreement in r round on HO.

Theorem 4.46 (Upper bounds (multiple rounds) on k-set agreement by covering numbers
for general closed-above predicates). Let HO be a general closed-above predicate generated
by the set of graphs S. Let r > 0. Then ∀i ∈ [1, γeq(Sr)[: Algorithm r − rounds solves
(i+ (n− covi(Sr)))-set agreement in r rounds on HO.

Proof. Because r − rounds is an oblivious algorithm, at round r every process p takes its
decision from only the pairs of (process, initial values) it has received in the r rounds. This



120 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

is equivalent to saying that p received all the initial values of its incoming neighbors in the
product of the r communication graphs.

By Lemma 4.42, this product of graph is included in ⋃
G1,...,Gr∈S

↑ ©r
i=1Gi =↑ Sr. Thus

there is a graph G in Sr such that every process receives at least the initial value from its
incoming neighbors in G.

For a set of i processes with the i smallest initial values, they will reach at least covi(Sr)
processes in G. Thus these processes will decide one of the i values when taking the smallest
value they received.

As for the rest of the processes, we can’t say anything about what they will receive, and
thus we consider the worst case, where they all decide differently, and not one of the i smallest
values. Then the number of decided values is at most i + (n − covi(Sr)), and the theorem
follows.

One issue with these bounds is that they require the computation of possibly many prod-
ucts, as well as the computation of the combinatorial numbers for a lot of graphs. One
alternative is to forsake the best bound possible for one that can be computed using only the
numbers for the initial graphs.

This hinges on covering number sequences. Recall that the i-th covering number of a graph
is the minimum number of processes hearing a set of i processes that do not broadcast. In a
sense, it gives the guaranty of propagation of information by a set of i processes.

That’s the whole story for one round. But what happens when you do multiple rounds?
Then, if the i-th covering number of the graph is greater than i, this means that in the next
rounds, the minimum number of people who will hear the value of the i initial processes is the
covi-th covering number. And if this number is greater than covi, this repeats.

Covering number sequences capture this process. One can also see them as the sequences
of covering numbers for powers of the graph.

Definition 4.47 (Covering number sequences). Let G be a graph. Then the i-th cover-
ing numbers sequence of G , (sij)j ∈N∗ such that si1 = covi(G) and ∀k ≥ 1 : sik+1 =(
|Π| if sik ≥ γeq(G)
covsi

k
(G) if sik < γeq(G)

)
Armed with these sequences, an upper bound follows from G directly.

Theorem 4.48 (Upper bounds on k-set agreement by covering numbers sequences). Let HO
be a simple closed-above predicate defined by the graph G on Π. Then if the i-th covering
sequence of G reaches |Π| for the first time at round t, ∀r ≥ t: Algorithm r − rounds solves
i-set agreement on the predicate HO.

Proof. Let S be the set of the i smallest initial values. There are at least k processes with one
of these values. Now the i-th covering sequence of G gives us a lower bound on the number
of processes who know these values for each round. We show this by induction on the index
j of the sequence elements.

• (Base case) j = 1. Then after one round, all processes who heard from our i initial
processes know their initial values; this number is lower bounded by covi(G).

• (Induction step) j = t+ 1 and the result holds ∀j ≤ t. Notably, sit lower bounds the
number of processes knowing one of the i initial values after t rounds.



4.6. MULTIPLE ROUNDS 121

– if st ≥ γeq(G) then whatever the set of processes knowing one of the i values after
round t, they form a dominating set. And thus every process will know at least on
of these values after round t+ 1, corresponding to sit+1 = n.

– If sit < γeq(G), then not all sets of size sit are dominating sets. But they all reach
at least covsi

t
(G) processes. Thus after round t + 1, at least that many processes

know at least one of the i initial values.

Hence, if the i-th covering sequence reaches n after say round t, all processes know at
least one initial value from every set of i processes. Notably, every process knows one of the
i smallest initial values, and thus choosing the smallest value ensures that i-set agreement is
solved.

Thus ∀r ≥ t : Algorithm r − rounds solves i-set agreement on HO.

This bound generalizes to general closed-above predicates by generalizing the covering
numbers sequences to a set of graphs.

Definition 4.49 (Covering numbers sequences for sets of graphs). Let s be set of graphs.
Then the i-th covering numbers sequence of S , (sj)j ∈N∗ such that s1 = min

G∈S
covi(G)

and

∀k ≥ 1 : sk+1 =

 n if sk ≥ max
G∈S

keq−dom(G)
min
G∈S

covsk
(G) if sk < max

G ∈S
keq−dom(G)


Theorem 4.50 (Upper bounds on k-set agreement by covering numbers sequences for general
closed-above predicates). Let S be a set of graphs on Π. Then if the i-th covering sequence of
S reaches |Π| for the first time at round t, ∀r ≥ t: Algorithm r−rounds solves i-set agreement
on the closed-above predicate generated by S.

Proof. If the i-th covering number sequence of S reaches n after step t, this means that every
set of i processes is heard by everyone after t rounds. In particular, the i processes with the
smallest initial values will be heard by everyone.

Hence ∀r ≥ t : Algorithm r − rounds solves i-set agreement.

4.6.3 Lower bounds for multiple rounds

In the same way as upper bounds, lower bounds generalize cleanly to multiple rounds.

Theorem 4.51 (Lower bound (multiple rounds) on k-set agreement for simple closed-above
predicates). Let r > 0 and let HO a simple closed-above predicate generated by the graph G
different from the clique.
Then (γ(G)− 1)-set agreement is not solvable on HO in r rounds by an oblivious algorithm.

Proof. Because we only consider oblivious algorithms, we can consider the graphs given by
the products of r graphs of HO as generating a predicate, and apply our bound for one round.
The trick is to know if (↑ G)r is itself a simple closed-above predicate. One would think
that probably (↑G)r =↑Gr, but this is not true in general, as shown in the examples at the
beginning of the section.

On the other hand, (↑G)r contains a subcomplex which has all the properties that we use
in the proof of our lower bound: Gr−1. ↑G.



122 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

• It is a pseudosphere. Indeed, such a complex contains the uninterpreted complex of
Gr−1.G = Gr; and each edge added to G only changes the view of one process in the
product, the one receiving the new message.
Hence we can change the view of each process independently of the others (because we
only add messages to the last graph, and thus no two such messages can interfere with
each other to create a new path).

• It contains the full simplex. This follows from the fact that ↑G contains the clique, and
our product operation maintain this graph.

• It is included in the complex ↑Gr. This follows from the fact that adding messages to
G can only add messages to the product, and thus all considered graphs contain Gr and
thus are in ↑Gr.

This means that this subcomplex can be treated just like the complex of ↑Gr in our lower
bound for one round. The theorem follows.

Theorem 4.52 (Lower bound (multiple rounds) on k-set agreement for general closed-above
predicates). Let r > 0 and let HO be a closed-above predicate generated by the set of graphs
S, such that S is not the singleton set of the clique..
Let l = min(γdist(Sr), min

t∈[1,γdist(Sr)[
t+Mt(Sr))− 2. Then (l + 1)-set agreement is not solvable

on HO in r rounds by an oblivious algorithm.

Proof. The idea is the same that for the proof above, except that for each product of r graphs
G1.G2. . . . .Gr, we consider the complex of the graphs in G1.G2. . . . .Gr−1. ↑Gr.

This satisfies the same three properties used in our lower bound proof than ↑
(G1.G2. . . . .Gr), and thus our lower bound gives the same result.

This means we can consider the union of our complexes like the the union of the complexes
for ↑(G1.G2. . . . .Gr) for each product of r graphs of S, that is like the complex of the general
closed-above predicate generated by Sn.

As a concrete applications of these bounds, let’s consider a classical family of subgraphs:
stars.

Definition 4.53 (Star graph). Let G be a graph. Then G is a star graph , ∃c ⊆ Π : G =
(V, {c} ×Π).

Theorem 4.54 (Lower bound for stars). Let S be the set of graphs which are unions of s star
graphs with different centers. Then (n − s)-set agreement is not solvable in the closed-above
predicate generated by S.

Proof. First, we have ∀r > 0 : γdist(Sr) = γdist(S) = n− s+ 1.
The first equality follows from the fact that the product of any star graph with itself is

the same initial star graph; hence S ⊆ Sr, and a set of n − s processes in the n − s graphs
with stars at the other s processes does not dominate these graphs. This actually gives
γdist(Sr) ≥ γdist(S); the other direction follows form the fact that ∀G ∈ Sr, ∃H ∈ S : G ∈↑H.
Hence every set of i graphs in Sr will have more edges than some set of i graphs in S, and
thus will be easier to dominate.



4.7. CONCLUSION 123

One round Multiple (r) rounds
Upper Bound
by γeq(S) γeq(S) γeq(Sr)

Upper Bound
by covi(S) i+ (n− covi(S)) i+ (n− covi(Sr))

Lower Bound min

 γdist(S),
min

t∈[1,γdist(S)[
t+Mt(S)

− 1 min

 γdist(Sr),
min

t∈[1,γdist(Sr)[
t+Mt(Sr)

− 1

Table 4.1: Overview of the main results of the chapter.

As for the second equality, it follows from the fact that from a set of n− s+ 1 processes,
and among n− s+ 1 distinct graphs, at least one of the process is the center of a star in one
of the graph, and thus the processes dominates the graphs.

On the other hand, ∀t ∈ [1, γdist(S) − 1] : t + M t(Sr) − 2 = n − 2. This equality comes
from the fact that any set of t processes that does not dominate a given set of t graphs of Sr
is distinct from the stars of these t graphs. Thus they are silent, and then max-covt(Sr) = t

and M t(Sr) = n− t. We thus have t+M t(Sr)− 2 = t+ n− t− 2 = n− 2.
Therefore min(γdist(Sr), min

t∈[1,γdist(Sr)[
t+Mt(Sr))− 2 = min(n− s+ 1, n)− 2 = n− s− 1.

We conclude by Theorem 4.52.

4.7 Conclusion

4.7.1 Summary

In this chapter, I proved upper and lower bounds on k-set agreement for closed-above predi-
cates, the class of heard-of predicates defined by subgraphs that must be present in the com-
munication graph at each round. These predicates encompass many message-passing models
of distributed computing focused on safety properties. Table 4.1 summarizes these bounds.

Regarding the bounds themselves, although their proofs leverage combinatorial topology,
all the bounds here are expressed in terms of combinatorial numbers of the graphs. That is,
these bounds can be used without any knowledge of combinatorial topology. Yet combinatorial
topology was instrumental in showing such sweeping results.

4.7.2 History of the research

This research comes from a collaboration with Armando Casteñada. Armando came to
Toulouse to work with my advisors in the summer of 2018, when I proposed a collabora-
tion to him on applying combinatorial topology to the Heard-Of model.

This spawned a back and forth, which resulted in a proof of the idempotence of many
protocol complexes linked with the Heard-Of model, and subsequent lower bounds for the
k-set agreement. These results were written up for PODC 2019. Yet a week before the
submission, we realized that I made a mistake which greatly limited the breadth of the result.

The paper was thus scrapped, and the research started anew. During my two-month
research stay in Mexico in May/June 2019, Armando proposed what would become the closed-
above predicates, and the results followed from here.



124 CHAPTER 4. LEVERAGING HEARD-OF PREDICATES

4.7.3 Perspectives

Two direct extensions of this research would be: bounds on predicates that are not closed-
above, maybe not even oblivious; and an analysis of the tightness of the lower bounds.

Although closed-above predicates are a natural subsets, they still limit greatly the models
that can be studied. But predicates not closed-above, or not even oblivious, would not reduce
to the one round case, and thus would require new ideas.

For the tightness, it’s hard to know whether there’s a big gap between the upper and lower
bounds proven in this chapter. My intuition would say that they are close, but further analysis
is required to prove or disprove this conjecture.



Chapter 5

Conclusion

5.1 Summary

The Heard-Of model aims to solve a fundamental problem of distributed computing: the
overabundance of incomparable models. It abstracts away many different parameters into
a formal property about infinite sequences of graphs. This elegant formalism then makes
it possible to prove sweeping results linking models, and to go from one to another in as
systematic way.

Yet it is not used much by researchers. This thesis addresses three angles on this problem:

• How to find, in a principled way, the right heard-of predicate to study a
given model. For someone to use the Heard-Of model instead of another one, the
latter must be expressed in the former. I proposed to do this by adding an interme-
diary step between the operational models and the heard-of predicates: the delivered
predicates, which capture only the addition of rounds to the model, not any subtleties
of asynchrony. I then showed how to derive delivered predicates from operational mod-
els – through combination of operations –, and how to derive heard-of predicates from
delivered predicates – through strategies.

• The existence of predicates equivalent in terms of solvability with specific
models. Once a model is expressed through a heard-of predicate, a natural question
to ask is whether something was lost in this translation. I gave an element of answer
by finding heard-of predicates equivalent to the Chandra-Toueg hierarchy of failure de-
tectors. Because this equivalence is couched in terms of solvability, I also explored the
different notions of solvability in the Heard-Of model, for which such equivalences can
be proven, and how to move between them.

• How to prove results on heard-of predicates using general powerful tech-
niques. Finally, a heard-of predicate serves to prove results. Here the elegant formal-
ization makes things more difficult, as heard-of collection tend to be mathematically
more complex to handle than classical models of distributed computation. A need thus
exists for a systematic approach to derive computability and complexity results. I started
one such approach by applying combinatorial topology tools to the solvability of k-set
agreement problem. When limiting ourselves to specific classes of heard-of predicates,
these tools generate valuable lower and upper bounds on the k for which k-set agreement
is solvable.

Although the problems with the Heard-Of model are far from completely solved, the re-
search from this thesis cements the relevance of this model for studying distributed computing.
It entails that common models can be abstracted by heard-of predicates, without losing too
much power, and that results can be proved on these models with general techniques.



126 CHAPTER 5. CONCLUSION

5.2 Perspectives

When thinking about what still needs to be done, I see two parallel threads: studying further
the three aspects of the Heard-Of model investigated in this thesis; and exploring other aspects
of the Heard-Of model.

5.2.1 Further perspective on my work

Finding the right heard-of predicate In Chapter 2, the perspectives focused on the next
steps in the study of delivered predicates and strategies. Zooming out, one question becomes
obvious: is there always a characterizing heard-of predicate for a given delivered predicate?

My intuition say that there is. Yet this is not trivial to prove, because there might be an
infinite sequence of improving strategies without a concrete limit. The vocabulary smells of
point-set topology, and that’s where my intuition tells me that the proof of this statement –
or its refutation – lies.

Even if delivered predicates without a characterizing heard-of predicate exist, they might
be so pathological as to not matter in practice. Which means that the next best thing to
proving the existence of a characterizing heard-of predicate is to delineate the set of delivered
predicates without one.

Comparing operational models and heard-of predicate Here too, the perspectives
of the corresponding chapter dealt with the concrete next step. This leave us free to ask the
underlying question: is there an operational model without an equivalence heard-of predicate?

I believe the answer is yes, yet I failed to find any such example. Maybe its because every
example is pathological, or maybe the models I explored are too well-behaved for that. Either
way, finding such a model would be a very important result, even more so if it reveals what is
lost in going to rounds.

If all models have an equivalent heard-of predicate, what to do becomes slightly more
tricky. The lack of formalization of operation models – that’s what the Heard-Of model is
here for, after all – means that no sweeping result can be proved on "every operational model".
The best one might hope for is a result on a large class of operation models which allows
formalization.

Proving results on heard-of predicates The research program for this last direction
points more towards mathematical understanding than a deep concept: the study of the
protocol complexes of heard-of predicates. My intuition screams that this is the right approach
to analyzing distributed problems in the Heard-Of model, and that the only obstacle in the way
of this approach is our inability to prove topological property about the relevant complexes.

What is left to discover is whether the right mathematical tool already exists in the com-
binatorial topology literature, or if distributed computing researchers will need to forge their
own.

5.2.2 Other questions

I already proposed many other open problems in my SIGACT News Distributed Computing
Column [3]; this subsection presents some of them in more detail.



5.2. PERSPECTIVES 127

Translations between heard-of predicates From the start, the Heard-Of model comes
with a notion of translation between predicates. Such a translation from predicate HO1 to
predicate HO2 captures the possibility of using multiple rounds of HO1 to implement one
round of HO2. Intuitively, the same messages are sent for multiple rounds, and after that
many rounds, all that was received satisfy the property defining HO2.

Studying the closure of predicates through such translations would provide theoretical and
practical advances: the former thanks to the definition of equivalence classes of predicates,
and the latter by allowing one to check if an algorithm exists for a predicate by checking if an
algorithm exists for any predicate in its closure. As of now, the only in-depth examination of
these translations lies in Schmid et al. [40].

Probabilistic Heard-Of model The Heard-Of model is deterministic. Given an algorithm
and a collection, the behavior of the system is completely determined. Yet probabilistic models
and reasoning prove an important part of distributed computing. It’s thus only natural to ask
how one might add probability in this model.

I see two distinct approach. The first is to allow probabilistic algorithms. This has the
benefits of changing nothing about how predicates are defined; it only makes it harder to
study the behavior of the system. The other, more original take, is to make the predicate
probabilistic. Instead of saying that an algorithm should be correct for any collection in the
predicate, having a measure of probability on the set defined by the predicate would allow
a probabilistic definition of correctness: the algorithms must finish with probability 1, for
example. If previous work is an indication – like Ben-Or’s randomized consensus algorithm [74]
–, then this relaxation will yield fascinating new algorithms.

Repeated tasks The original paper by Charron-Bost and Schiper [37] focuses on consensus.
One limitation of consensus comes from it being a one-shot task: you solve it once, and then
you’re done. Yet many problems in distributed computing fall on the repeated task side:
one must solve something over and over again. A perfect example is the implementation of
distributed objects.

This question intersect with the detection of termination, the composition of algorithms in
the Heard-Of model, and whereas the deterministic behavior given the input and the collection
must be maintained at all cost. Work in this direction is lacking, although some preliminary
research by Andrei et al. [48] attempts to tackle it.





Bibliography

[1] K. R. Popper, The Logic of Scientific Discovery. London: Hutchinson, 1934. (Cited in
page 2.)

[2] R. Hoffmann, “What might philosophy of science look like if chemists built it?,” Synthese,
vol. 155, no. 3, pp. 321–336, 2007. (Cited in page 2.)

[3] A. Shimi, “The splendors and miseries of rounds,” SIGACT News, vol. 50, pp. 35–50,
Sept. 2019. (Cited in pages 3, 7, and 126.)

[4] T. Elrad and N. Francez, “Decomposition of distributed programs into communication-
closed layers,” Science of Computer Programming, vol. 2, no. 3, pp. 155–173, 1982. (Cited
in page 4.)

[5] M. Chaouch-Saad, B. Charron-Bost, and S. Merz, “A reduction theorem for the veri-
fication of round-based distributed algorithms,” in Proceedings of the 3rd International
Workshop on Reachability Problems, RP ’09, pp. 93–106, Springer-Verlag, 2009. (Cited
in page 4.)

[6] A. Damien, C. Dragoi, A. Militaru, and J. Widder, “Reducing asynchrony to synchronized
rounds,” CoRR, vol. abs/1804.07078, 2018. (Cited in page 4.)

[7] K. V. Gleissenthall, R. G. Kici, A. Bakst, D. Stefan, and R. Jhala, “Pretend synchrony:
Synchronous verification of asynchronous distributed programs,” Proc. ACM Program.
Lang., vol. 3, pp. 59:1–59:30, Jan. 2019. (Cited in page 4.)

[8] A. Cornejo and F. Kuhn, “Deploying wireless networks with beeps,” in Proceedings of the
24th International Conference on Distributed Computing, DISC’10, pp. 148–162, Springer-
Verlag, 2010. (Cited in pages 5 and 17.)

[9] A. Cornejo, A. Dornhaus, N. Lynch, and R. Nagpal, “Task allocation in ant colonies,”
in Proceedings of the 28th International Conference on Distributed Computing, DISC’14,
pp. 46–60, Springer-Verlag, 2014. (Cited in page 5.)

[10] S. Gilbert, J. Maguire, and C. Newport, “On bioelectric algorithms: A novel applica-
tion of theoretical computer science to core problems in developmental biology,” CoRR,
vol. abs/1809.10046, 2018. (Cited in page 5.)

[11] I. Chlamtac and S. Kutten, “On broadcasting in radio networks - problem analysis and
protocol design,” IEEE Transactions on Communications, vol. 33, pp. 1240–1246, Dec.
1985. (Cited in pages 5 and 16.)

[12] F. Kuhn, N. Lynch, and R. Oshman, “Distributed computation in dynamic networks,” in
Proceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10,
pp. 513–522, ACM, 2010. (Cited in page 5.)

[13] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst., vol. 16, pp. 133–
169, May 1998. (Cited in pages 5 and 19.)



130 BIBLIOGRAPHY

[14] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance broadcast for
primary-backup systems,” in Proceedings of the 2011 IEEE/IFIP 41st International Con-
ference on Dependable Systems&Networks, DSN ’11, pp. 245–256, IEEE Computer Soci-
ety, 2011. (Cited in page 5.)

[15] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new primary copy method to
support highly-available distributed systems,” in Proceedings of the Seventh Annual ACM
Symposium on Principles of Distributed Computing, PODC ’88, pp. 8–17, ACM, 1988.
(Cited in pages 5 and 19.)

[16] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed sys-
tems,” J. ACM, vol. 43, pp. 225–267, Mar. 1996. (Cited in pages 5, 18, 65, 67, 68,
and 75.)

[17] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The weakest failure detector for solving
consensus,” J. ACM, vol. 43, pp. 685–722, July 1996. (Cited in pages 5 and 65.)

[18] S. Rajsbaum and M. Raynal, “Mastering concurrent computing through sequential think-
ing,” Commun. ACM, vol. 63, pp. 78–87, Dec. 2019. (Cited in page 5.)

[19] M. Herlihy, D. Kozlov, and S. Rajsbaum, Distributed Computing Through Combinatorial
Topology. Morgan Kaufmann Publishers Inc., 1st ed., 2013. (Cited in pages 5, 98, 99,
105, 106, 107, 109, 110, and 113.)

[20] M. Herlihy and N. Shavit, “The topological structure of asynchronous computability,” J.
ACM, vol. 46, pp. 858–923, Nov. 1999. (Cited in pages 5 and 6.)

[21] E. Arjomandi, M. J. Fischer, and N. A. Lynch, “A difference in efficiency between syn-
chronous and asynchronous systems,” in Proceedings of the Thirteenth Annual ACM Sym-
posium on Theory of Computing, STOC ’81, pp. 128–132, ACM, 1981. (Cited in page 6.)

[22] P. Fraigniaud, A. Korman, and D. Peleg, “Towards a complexity theory for local dis-
tributed computing,” J. ACM, vol. 60, pp. 35:1–35:26, Oct. 2013. (Cited in page 6.)

[23] S. Arora and B. Barak, Computational Complexity: A Modern Approach. Cambridge
University Press, 1st ed., 2009. (Cited in page 6.)

[24] O. Goldreich, Computational Complexity: A Conceptual Perspective. Cambridge Univer-
sity Press, 1st ed., 2008. (Cited in page 6.)

[25] D. Peleg, Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, 2000. (Cited in pages 6, 15, 16, and 110.)

[26] A. Korman and S. Kutten, “On distributed verification,” in Proceedings of the 8th Inter-
national Conference on Distributed Computing and Networking, ICDCN’06, pp. 100–114,
Springer-Verlag, 2006. (Cited in page 6.)

[27] M. Göös and J. Suomela, “Locally checkable proofs,” in Proceedings of the 30th Annual
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC ’11,
pp. 159–168, ACM, 2011. (Cited in page 6.)



BIBLIOGRAPHY 131

[28] M. Ghaffari, D. G. Harris, and F. Kuhn, “On derandomizing local distributed algorithms,”
in 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 662–673, Oct. 2018. (Cited in page 6.)

[29] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg,
and R. Wattenhofer, “Distributed verification and hardness of distributed approxima-
tion,” in Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing,
STOC ’11, pp. 363–372, ACM, 2011. (Cited in page 6.)

[30] N. Santoro and P. Widmayer, “Time is not a healer,” in Proceedings of the 6th An-
nual Symposium on Theoretical Aspects of Computer Science on STACS 89, pp. 304–313,
Springer-Verlag New York, Inc., 1989. (Cited in page 7.)

[31] M. Raynal and M. Roy, “A note on a simple equivalence between round-based synchronous
and asynchronous models,” in Proceedings of the 11th Pacific Rim International Sympo-
sium on Dependable Computing, PRDC ’05, pp. 387–392, IEEE Computer Society, 2005.
(Cited in pages 7 and 18.)

[32] Y. Afek and E. Gafni, “A simple characterization of asynchronous computations,” Theor.
Comput. Sci., vol. 561, pp. 88–95, Jan. 2015. (Cited in pages 7, 18, 66, 67, and 100.)

[33] M. Raynal and J. Stainer, “Synchrony weakened by message adversaries vs asynchrony
restricted by failure detectors,” in Proceedings of the 2013 ACM Symposium on Principles
of Distributed Computing, PODC ’13, pp. 166–175, ACM, 2013. (Cited in pages 7, 18,
66, 67, and 72.)

[34] E. Gafni, “Round-by-round fault detectors (extended abstract): Unifying synchrony and
asynchrony,” in Proceedings of the Seventeenth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’98, (New York, NY, USA), pp. 143–152, ACM, 1998.
(Cited in pages 7 and 18.)

[35] I. Keidar and A. Shraer, “Timeliness, failure-detectors, and consensus performance,” in
Proceedings of the Twenty-fifth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’06, pp. 169–178, ACM, 2006. (Cited in page 8.)

[36] R. Guerraoui, “Indulgent algorithms (preliminary version),” in Proceedings of the Nine-
teenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’00,
pp. 289–297, ACM, 2000. (Cited in page 8.)

[37] B. Charron-Bost and A. Schiper, “The heard-of model: computing in distributed systems
with benign faults,” Distributed Computing, vol. 22, pp. 49–71, Apr. 2009. (Cited in
pages 8, 9, 10, 13, 18, 26, 27, 39, 98, and 127.)

[38] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus
with one faulty process,” J. ACM, vol. 32, pp. 374–382, Apr. 1985. (Cited in pages 9
and 18.)

[39] B. Charron-Bost, M. Függer, and T. Nowak, “Approximate consensus in highly dynamic
networks: The role of averaging algorithms,” in Automata, Languages, and Programming,
pp. 528–539, 2015. (Cited in pages 9, 98, and 100.)



132 BIBLIOGRAPHY

[40] U. Schmid, M. Schwarz, and K. Winkler, “On the strongest message adversary for con-
sensus in directed dynamic networks,” in Structural Information and Communication
Complexity, pp. 102–120, Springer International Publishing, 2018. (Cited in pages 9
and 127.)

[41] É. Coulouma, E. Godard, and J. Peters, “A characterization of oblivious message adver-
saries for which consensus is solvable,” Theoretical Computer Science, vol. 584, pp. 80–90,
2015. (Cited in pages 9, 98, and 99.)

[42] T. Nowak, U. Schmid, and K. Winkler, “Topological characterization of consensus un-
der general message adversaries,” in 2019 ACM Symposium on Principles of Distributed
Computing, PODC ’19, 2019. (Cited in pages 9, 98, 99, and 101.)

[43] A. R. Balasubramanian and I. Walukiewicz, “Characterizing consensus in the heard-
of model,” in 31st International Conference on Concurrency Theory (CONCUR 2020)
(I. Konnov and L. Kovács, eds.), vol. 171, (Dagstuhl, Germany), pp. 9:1–9:18, Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020. (Cited in page 9.)

[44] M. Biely, P. Robinson, M. Schmid, Ulrich Schwarz, and K. Winkler, “Gracefully degrading
consensus and k-set agreement in directed dynamic networks,” Theoretical Computer
Science, vol. 726, pp. 41–77, 2018. (Cited in pages 9 and 98.)

[45] B. Charron-Bost, H. Debrat, and S. Merz, “Formal verification of consensus algorithms
tolerating malicious faults,” in Stabilization, Safety, and Security of Distributed Systems,
pp. 120–134, Springer Berlin Heidelberg, 2011. (Cited in page 9.)

[46] O. Marić, C. Sprenger, and D. Basin, “Cutoff bounds for consensus algorithms,” in Com-
puter Aided Verification, pp. 217–237, Springer International Publishing, 2017. (Cited in
page 9.)

[47] C. Drăgoi, T. A. Henzinger, and D. Zufferey, “Psync: A partially synchronous language
for fault-tolerant distributed algorithms,” SIGPLAN Not., vol. 51, pp. 400–415, Jan. 2016.
(Cited in page 9.)

[48] A. Damian, C. Drăgoi, A. Militaru, and J. Widder, “Communication-closed asynchronous
protocols,” in Computer Aided Verification (I. Dillig and S. Tasiran, eds.), pp. 344–363,
2019. (Cited in pages 15 and 127.)

[49] M. Haundefinedćkowiak, M. Karoundefinedski, and A. Panconesi, “On the distributed
complexity of computing maximal matchings,” in Proceedings of the Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’98, pp. 219–225, 1998. (Cited in
page 16.)

[50] F. Kuhn, N. Lynch, and R. Oshman, “Distributed computation in dynamic networks,” in
Proceedings of the Forty-second ACM Symposium on Theory of Computing, STOC ’10,
(New York, NY, USA), pp. 513–522, ACM, 2010. (Cited in page 17.)

[51] A. Casteigts, Y. Métivier, J. M. Robson, and A. Zemmari, “Design patterns in beeping
algorithms: Examples, emulation, and analysis,” Information and Computation, vol. 264,
pp. 32–51, 2019. (Cited in page 17.)



BIBLIOGRAPHY 133

[52] C. Dwork, N. A. Lynch, and L. J. Stockmeyer, “Consensus in the presence of partial
synchrony,” J. ACM, vol. 35, no. 2, pp. 288–323, 1988. (Cited in page 19.)

[53] M. Hutle and A. Schiper, “Communication predicates: A high-level abstraction for cop-
ing with transient and dynamic faults,” in 37th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN’07), pp. 92–101, June 2007. (Cited
in page 19.)

[54] A. Shimi, A. Hurault, and P. Quéinnec, “Characterizing asynchronous message-passing
models through rounds,” in 22nd Int’l Conf. on Principles of Distributed Systems
(OPODIS 2018), pp. 18:1–18:17, 2018. (Cited in pages 25 and 62.)

[55] A. Shimi, A. Hurault, and P. Queinnec in Formal Techniques for Distributed Objects,
Components, and Systems, (Cham), pp. 133–149, Springer International Publishing, 2020.
(Cited in page 25.)

[56] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui, “Shared memory vs message pass-
ing,” Tech. Rep. IC/2003/77, EPFL., 2003. (Cited in page 65.)

[57] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos, P. Kouznetsov, and
S. Toueg, “The weakest failure detectors to solve certain fundamental problems in dis-
tributed computing,” PODC ’04, pp. 338–346, 2004. (Cited in page 65.)

[58] P. Jayanti and S. Toueg, “Every problem has a weakest failure detector,” PODC ’08,
pp. 75–84, 2008. (Cited in page 66.)

[59] V. Bhatt and P. Jayanti, “On the existence of weakest failure detectors for mutual exclu-
sion and k-exclusion,” DISC’09, pp. 311–325, 2009. (Cited in page 66.)

[60] B. Charron-Bost, M. Hutle, and J. Widder, “In search of lost time,” Inf. Process. Lett.,
vol. 110, pp. 928–933, Oct. 2010. (Cited in page 66.)

[61] M. Biely, M. Hutle, L. D. Penso, and J. Widder, “Relating stabilizing timing assumptions
to stabilizing failure detectors regarding solvability and efficiency,” SSS’07, pp. 4–20,
Springer-Verlag, 2007. (Cited in page 67.)

[62] B. Charron-Bost, R. Guerraoui, and A. Schiper, “Synchronous system and perfect fail-
ure detector: Solvability and efficiency issue,” in Proceedings of the 2000 International
Conference on Dependable Systems and Networks, DSN ’00, (Washington, DC, USA),
pp. 523–532, IEEE Computer Society, 2000. (Cited in page 67.)

[63] M. Moir and J. H. Anderson, “Wait-free algorithms for fast, long-lived renaming,” Science
of Computer Programming, vol. 25, no. 1, pp. 1–39, 1995. (Cited in page 93.)

[64] A. Castañeda, S. Rajsbaum, and M. Raynal, “The renaming problem in shared memory
systems: An introduction,” Computer Science Review, vol. 5, no. 3, pp. 229–251, 2011.
(Cited in page 93.)

[65] S. Chaudhuri, “More choices allow more faults: Set consensus problems in totally asyn-
chronous systems,” Information and Computation, vol. 105, no. 1, pp. 132–158, 1993.
(Cited in page 98.)



134 BIBLIOGRAPHY

[66] A. Castañeda, P. Fraigniaud, A. Paz, S. Rajsbaum, M. Roy, and C. Travers, “A topo-
logical perspective on distributed network algorithms,” in Structural Information and
Communication Complexity, pp. 3–18, 2019. (Cited in pages 98, 102, 110, 112, and 114.)

[67] M. Saks and F. Zaharoglou, “Wait-free k-set agreement is impossible: The topology of
public knowledge,” SIAM J. Comput., vol. 29, pp. 1449–1483, Mar. 2000. (Cited in
page 99.)

[68] E. Borowsky and E. Gafni, “Generalized FLP impossibility result for T-resilient asyn-
chronous computations,” in Twenty-fifth Annual ACM Symposium on Theory of Com-
puting, STOC ’93, pp. 91–100, ACM, 1993. (Cited in page 99.)

[69] A. Castañeda and S. Rajsbaum, “New combinatorial topology bounds for renaming: the
lower bound,” Distributed Computing, vol. 22, pp. 287–301, Aug 2010. (Cited in page 99.)

[70] M. Herlihy and S. Rajsbaum, “The topology of distributed adversaries,” Distributed Com-
puting, vol. 26, pp. 173–192, Jun 2013. (Cited in page 99.)

[71] D. Alistarh, J. Aspnes, F. Ellen, R. Gelashvili, and L. Zhu, “Why extension-based proofs
fail,” CoRR, vol. abs/1811.01421, 2018. (Cited in page 99.)

[72] E. Godard and E. Perdereau, “k-set agreement in communication networks with omission
faults,” in 20th International Conference on Principles of Distributed Systems (OPODIS
2016), vol. 70 of Leibniz International Proceedings in Informatics (LIPIcs), (Dagstuhl,
Germany), pp. 8:1–8:17, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017. (Cited
in page 99.)

[73] D. N. Kozlov, Combinatorial Algebraic Topology, vol. 21 of Algorithms and computation
in mathematics. Springer, 2008. (Cited in page 108.)

[74] M. Ben-Or, “Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols,” PODC ’83, pp. 27–30, Association for Computing Ma-
chinery, 1983. (Cited in page 127.)



Résumé

La théorie des systèmes distribués, à l’inverse de l’informatique théorique séquentielle, étudie
énormément de modèles différents et incomparables. En effet, elle se concentre sur l’incertitude
inhérente de la communication et de la synchronisation, qui peut se modéliser de milles façons
différentes. Cela entraine une explosition du nombre de modèles à considérer, et avec une
difficulté à tous les garder en tête, les comprendre et les comparer.

Une solution récente à ce problème utilise le concept de rounds – ou tours : une structure où
chaque processus envoie à tous un message annoté avec son numéro de round courant, attend
un certain nombre de messages annotés avec ce même numéro, et puis utilise ses messages pour
ses calculs locaux, avant de passer au round suivant en incrémentant son numéro. Aucune
proposition n’utilise cette idée aussi bien, à mon avis, que le modèle Heard-Of de Charron-
Bost et Schiper. Ce dernier offre comme avantage significatif une absence – ou au moins
une minimisation – d’hypothèses opérationelles : pas de synchronie, pas d’adversaires, pas
même de fautes. Tout revient aux messages qui sont reçus par les processus à temps – c’est-
à-dire avant la fin du round correspondant chez le recepteur. Ces contraintes sur les messages
forment des collections heard-of, qui elles même forment des prédicats heard-of, l’équivalent
des modèles classiques.

Malgré les promesses du modèle Heard-Of, il ne jouit pas de la popularité qu’il mérite au
sein de la communauté des systèmes distribués. Je conjecture que cela vient de trois problèmes
non encore résolus, qui limitent son utilité pour les chercheurs. Ces trois problèmes sont :
comment trouver le prédicat heard-of qui correspond à un modèle classique donné ; quelles
pertes surviennent lors de cette conversion ; et comment prouver des résultats généraux sur
des prédicates heard-of.

Ma thèse explore ces trois questions, et fournit des premiers éléments de réponse : une for-
malisation de la dérivation d’un prédicat heard-of correspondant à un certain modèle, avec en
supplément une méthodologie pour simplifier cette dérivation en décomposant le modèle de dé-
part en une combinaison de modèles plus simples ; une équivalence entre de nouveaux prédicat
heard-of et les modèles à messages asynchrones augmentés de détecteurs de fautes, ainsi qu’une
exploration des hypothèses derrière cette équivalence et ses prédécesseurs dans la littérature ; et
des résultats d’impossibilité pour le k-set agreement à travers la topologie combinatoire, se con-
centrant sur une classe de prédicats heard-of qui capture de nombreuses propriétés de sûreté.

Mots clés :



Abstract

Distributed computing differs from sequential computing mainly through its abundance of
incomparable models. Whereas everything goes back to Turing machines in sequential com-
puting, distributed computing models the inherent uncertainties of communication and syn-
chronization, in many equally meaningful ways that don’t fall under the umbrella of one true
model. The need to study them all then leads to the complex landscape of distributed com-
puting models.

A recent approach for dealing with this difficulty proposes to unify models through
communication-closed rounds: sequences of steps where everyone sends a message tagged
with the current round number, waits for messages with this same round number, and then
uses them to compute its next state and change round. The most promising take on this
approach, in my opinion, is the Heard-Of model of Charron-Bost and Schiper. One significant
advantage of this model over alternatives lies in its lack of operational assumptions: no syn-
chrony, no adversary, not even failures. Everything follows from which message is received on
time – before the end of the corresponding round at the receiver. Collections capture these
possible patterns of messages received on time, and predicates over these collections capture
models of communication.

Yet this model lacks the attention that it deserves from the research community. I believe
the reason lies on the following three unsolved problems: how to find the heard-of predicate
corresponding to a given model; is anything lost in this translation; and how to prove general
results on heard-of predicates.

This thesis addresses all three, and provides elements of answers: a formalization of how
to derive the most meaningful heard-of predicate for a given model, along with a methodology
for simplifying this derivation by decomposing the original model into a combination of sim-
pler ones; an equivalence between new heard-of predicates and asynchronous message-passing
with failure detectors, along with an analysis of the underlying assumptions of such and pre-
vious equivalences; and general impossibility results for k-set agreement using combinatorial
topology, and focusing on a class of heard-of predicates capturing many safety properties.

Keywords: Distributed Systems, Rounds, Heard-Of Model


	Introduction
	A Philosophy of Distributed Computing
	Knowledge, Science and Computing
	Distributed Computing: in the Face of Uncertainty

	The Monopoly of Rounds
	The Essence of Rounds
	The Adventures of Rounds
	In Search of Distributed Time

	Nothing but Rounds: the Heard-Of Model
	Equivalence with Round-Based Models
	Abstracting rounds
	A Mathematical Abstraction: the Heard-Of model

	The Road Ahead

	The Heard-Of Model: Definitions and Perspectives
	Introduction
	Into the Weeds: Definitions and Details
	Defining the Heard-Of Model
	Defining Predicates
	Reaching the Limits

	State of the Art: Distributed Computing Models
	I'll Do Anything for Synchrony
	Beyond Synchrony

	Conclusion

	Making Heard-Of predicates
	Introduction
	It's always asynchrony's fault
	Overview

	Delivered Predicates: Rounds Without Timing
	Removing Timing Information
	Building Delivered Predicates

	Delivered In, Heard-Of Out
	Executions
	Strategies, and How to Build Them
	Extracting Heard-Of Collections of Executions
	Two simple executions
	A Complete Example: At Most F Crashes

	Carpe Diem: Oblivious Strategies Living in the Moment
	Definition and Expressiveness Results
	Building oblivious strategies
	Computing Heard-Of Predicates
	When Oblivious is Enough

	No Future: Conservative to the End
	Definition and Expressiveness Results
	Building conservative strategies
	Computing Heard-Of predicates of conservative strategies
	When Conservative is Enough

	The future is now
	Perspectives
	Summary
	History of the research
	Perspective


	Clashing Heard-Of Predicates with Other Models
	Introduction
	Motivation
	Overview
	Related Work

	Models and Previous Results
	Models

	Simulations
	Specifications
	Focus on Strong Completeness
	From HO[HO] to AMP[FD]
	From AMP[FD] to HO[HO]

	Extending to the All-Deciding Case
	Full Monotony: Extending the Final Decisions
	Local Specifications: Agreeing on a Full Decision

	Conclusion
	Summary
	History of the research
	Perspectives


	Leveraging Heard-Of Predicates
	Introduction
	Motivation
	Overview
	Related Works

	Definitions
	Closed-above predicates
	Oblivious algorithms
	K-set agreement

	One round upper bounds: a start without topology
	Simple closed-above predicates: almost too easy
	General closed-above predicates: tweaking of upper bounds
	Intuitions on upper and lower bounds

	Elements of combinatorial topology
	Preliminary definitions
	Uninterpreted complexes of closed-above predicates
	Interpretation of uninterpreted complexes
	A Powerful Tool

	One round lower bounds: a touch of topology
	Multiple rounds
	Closure-above is not invariant by product, but its still works
	Upper bounds for multiple rounds
	Lower bounds for multiple rounds

	Conclusion
	Summary
	History of the research
	Perspectives


	Conclusion
	Summary
	Perspectives
	Further perspective on my work
	Other questions


	Bibliography

