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Abstract. There are many models of distributed computing, and no
unifying mathematical framework for considering them all. One way to
sidestep this issue is to start with simple communication and fault mod-
els, and use them as building blocks to derive the complex models studied
in the �eld. We thus de�ne operations like union, succession or repeti-
tion, which makes it easier to build complex models from simple ones
while retaining expressivity.
To formalize this approach, we abstract away the complex models and
operations in the Heard-Of model. This model relies on (possibly asyn-
chronous) rounds; sequence of digraphs, one for each round, capture
which messages sent at a given round are received before the receiver
goes to the next round. A set of sequences, called a heard-of predicate,
de�nes the legal communication behaviors � that is to say, a model of
communication. Because the proposed operations behave well with this
transformation of operational models into heard-of predicates, we can
derive bounds, characterizations, and implementations of the heard-of
predicates for the constructions.

Keywords: Message-passing · Asynchronous Rounds · Failures · Heard-
Of Model

1 Introduction

1.1 Motivation

Let us start with a round-based distributed algorithm; such an algorithm is
quite common in the literature, especially in fault-tolerant settings. We want to
formally verify this algorithm using the methods of our choice: proof-assistant,
model-checking, inductive invariants, abstract interpretation. . . But how are we
supposed to model the context in which the algorithm will run? Even a passing
glance at the distributed computing literature shows a plethora of models de�ned
in the mixture of english and mathematics.

Thankfully, there are formalisms for abstracting round-based models of dis-
tributed computing. One of these is the Heard-Of model of Charron-Bost and
Schiper [4]; it boils down the communication model to a description of all ac-
cepted combinations of received messages. Formally, this is done by considering
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communications graphs, one for each round, and taking the sets of in�nite se-
quences of graphs that are allowed by the model. Such a set is called a heard-of
predicate, and captures a communication model.

An angle of attack for veri�cation is therefore to �nd the heard-of predicate
corresponding to a real-world environment, and use the techniques from the
literature to verify an algorithm for this heard-of predicate. But which heard-of
predicate should be used? What is the "right" predicate for a given environment?
For some cases, the predicates are given in Charron-Bost and Schiper [4]; but
this does not solve the general case.

Actually, the answer is quite subtle. This follows from a fundamental part of
the Heard-Of model: communication-closedness [7]. This means that for p to use
a message from q at round r, p must receive it before or during its own round r.
And thus, knowing whether p receives the message from q at the right round or
not depends on how p waits for messages. That is, it depends on the speci�cs of
how rounds are implemented on top of it.

Once again, the literature o�ers a solution: Shimi et al. [12] propose to �rst
�nd a delivered predicate � a description of which messages will eventually be
delivered, without caring about rounds �, and then to derive the heard-of pred-
icate from it. This derivation explicitly studies strategies, the aforementioned
rules for how processes waits for messages before changing round.

But this brings us back to square one: now we are looking for the delivered
predicate corresponding to a real-world model, instead of the heard-of predicate.
Basic delivered predicates for elementary failures are easy to �nd, but delivered
predicates corresponding to combinations of failures are often not intuitive.

In this paper, we propose a solution to this problem: building a complex
delivered predicate from simpler ones we already know. For example, consider a
system where one process can crash and may recover later, and another process
can de�nitively crash. The delivered predicate for at most one crash is PDelcrash1 ,
and the predicate where all the messages are delivered is PDeltotal. Intuitively,
a process that can crash and necessarily recover is described by the behavior
of PDelcrash1 followed by the behavior of PDeltotal. We call this the succes-
sion of these predicates, and write it PDelrecover1 , PDelcrash1  PDeltotal.
In our system, the crashed process may never recover: hence we have either
the behavior of PDelrecover1 or the behavior of PDelcrash1 . This amounts to a
union (or a disjunction); we write it PDelcanrecover1 , PDelrecover1 ∪PDelcrash1 .
Finally, we consider a potential irremediable crash, additionally to the previ-
ous predicate. Thus we want the behavior of PDelcrash1 and the behavior of
PDelcanrecover1 . We call it the combination (or conjunction) of these predicates,
and write it PDelcrash1

⊗
PDelcanrecover1 The complete system is thus described

by PDelcrash1

⊗
((PDelcrash1  PDeltotal) ∪ PDelcrash1 ). In the following, we

will also introduce an operator ω to express repetition. For example, a system
where, repeatedly, a process can crash and recover is (PDelcrash1  PDeltotal)ω.

Lastly, the analysis of the resulting delivered predicate can be bypassed: its
heard-of predicate arises from our operations applied to the heard-of predicates
of the elementary building blocks.
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1.2 Related Work

The heard-of model was proposed by Charron-Bost and Schiper [4] as a combina-
tion of the ideas of two previous work. First, the concept of a fault model where
the only information is which message arrives, from Santoro and Widmayer [11];
and second, the idea of abstracting failures in a round per round fashion, from
Gafni [8]. Replacing the operational fault detectors of Gafni with the fault model
of Santoro and Widmayer gives the heard-of model.

This model was put to use in many ways. Obviously computability and com-
plexity results were proven: new algorithms for consensus in the original paper
by Charron-Bost and Schiper [4]; characterizations for consensus solvability by
Coulouma et al. [5] and Nowak et al. [10]; a characterization for approximate
consensus solvability by Charron-Bost et al. [3]; a study of k set-agreement by
Biely et al. [1]; and more.

The clean mathematical abstraction of the heard-of model also works well
with formal veri�cation. The rounds provide structure, and the reasoning can
be less operational than in many distributed computing abstractions. We thus
have a proof assistant veri�cation of consensus algorithms in Charron-Bost et
al. [2]; cuto� bounds for the model checking of consensus algorithms by Mari¢
et al. [9]; a DSL to write code following the structure of the heard-of model and
verify it with inductive invariants by Dr goi et al. [6]; and more.

1.3 Contributions

The contribuitions of the paper are:

� A de�nition of operations on delivered predicates and strategies, as well as
examples using them in Section 2.

� The study of oblivious strategies, the strategies only looking at messages for
the current round, in Section 3. We provide a technique to extract a strategy
dominating the oblivious strategies of the built predicate from the strate-
gies of the initial predicates; exact computations of the generated heard-of
predicates; and a su�cient condition on the building blocs for the result of
operations to be dominated by an oblivious strategy.

� The study of conservative strategies, the strategies looking at everything but
messages from future rounds, in Section 4. We provide a technique to extract
a strategy dominating the conservative strategies of the build predicate from
the strategies of the initial predicates; upper bounds on the generated heard-
of predicates; and a su�cient condition on the building blocs for the result
of operations to be dominated by a conservative strategy.

Due to size constraints, many of the complete proofs are not in the paper
itself, and can be found in the appendix.
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2 Operations and Examples

2.1 Basic concepts

We start by providing basic de�nitions and intuitions. The model we consider
proceed by rounds, where processes send messages tagged with a round number,
wait for some messages with this round number, and then compute the next
state and increment the round number.

De�nition 1 (Collections and Predicates). Let Π a set of processes. Then
an element of (N∗×Π) 7→ P(Π) is either a Delivered collection c or a Heard-
Of collection h for Π, depending on the context. ctot is the total collection such
that ∀r > 0,∀p ∈ Π : ctot(r, p) = Π.

An element of P((N∗×Π) 7→ P(Π)) is either a Delivered predicate PDel
or a Heard-Of predicate PHO for Π. Ptot = {ctot} is the total delivered
predicate.

For a heard-of collection h, h(r, p) are the senders of messages for round r
that p has received at or before its round r, and thus has known while at round
r. For a delivered collection c, c(r, p) are the senders of messages for round r
that p has received, at any point in time. Some of these messages may have
arrived early, before p was at r, or too late, after p has left round r. c gives an
operational point of view (which messages arrive), and h gives a logical point of
view (which messages are used).

Remark 1. We also regularly use the "graph-sequence" notation for a collec-
tion c. Let GraphsΠ be the set of graphs whose nodes are the elements of Π.
Then a collection gr is an element of (GraphsΠ)ω. We say that c and gr rep-
resent the same collection when ∀r > 0,∀p ∈ Π : c(r, p) = Ingr[r](p), where
In(p) is the incoming vertices of p. We will usually not de�ne two collections
but use one collection as both kind of objects; the actual type being used in a
particular expression can be deduced from the operations on the collection. For
example c[r] makes sense for a sequence of graphs, while c(r, p) makes sense for
a function.

In an execution, the local state of a process is the pair of its current round
and all the received messages up to this point. A message is represented by a
pair 〈round, sender〉. For a state q, q(i) is the set of peers from which the process
has received a message for round i.

De�nition 2 (Local State). Let Q = N∗×P(N∗×Π). Then q ∈ Q is a local
state.

For q = 〈r,mes〉, we write q.round for r, q.mes for mes and ∀i > 0 : q(i) ,
{k ∈ Π | 〈i, k〉 ∈ q.mes}.

We then de�ne strategies, which constrain the behavior of processes. A strat-
egy is a set of states from which a process is allowed to change round. It captures
rules like "wait for at least F messages from the current round", or "wait for
these speci�c messages". Strategies give a mean to constrain executions.

De�nition 3 (Strategy). f ∈ P(Q) is a strategy.
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2.2 De�nition of Operations

We can now de�ne operations on predicates and their corresponding strategies.

De�nition 4 (Operations on predicates). Let P1, P2 be two delivered or
heard-of predicates.

� The union of P1 and P2 is P1 ∪ P2.
� The combination P1

⊗
P2 , {c1

⊗
c2 | c1 ∈ P1, c2 ∈ P2 }, where for c1

and c2 two collections, ∀r > 0,∀p ∈ Π : (c1
⊗
c2)(r, p) = c1(r, p) ∩ c2(r, p).

� The succession P1  P2 ,
⋃

c1∈P1,c2∈P2

c1  c2,

with c1  c2 , {c | ∃r ≥ 0 : c = c1[1, r].c2}.
� The repetition of P1, (P1)

ω , {c | ∃(ci)i∈N∗ ,∃(ri)i∈N∗ : r1 = 0 ∧ ∀i ∈ N∗ :
(ci ∈ P1 ∧ ri < ri+1 ∧ c[ri + 1, ri+1] = ci[1, ri+1 − ri])}.

The intuition behind these operations is the following:

� The union of two delivered predicates is equivalent to an OR on the two
communication behaviors. For example, the union of the delivered predicate
for one crash at round r and of the one for one crash at round r + 1 gives a
predicate where there is either a crash at round r or a crash at round r+ 1.

� The combination of two behaviors takes every pair of collections, one from
each predicate, and computes the intersection of the graphs at each round.
Meaning, it adds the loss of messages from both, to get both behaviors at
once. For example, combining PDelcrash1 with itself gives PDelcrash2 , the
predicate with at most two crashes.

� For succession, the system starts with one behavior, then switch to another.
The de�nition is such that the �rst behavior might never happen, but the
second one must appear.

� Repetition is the next logical step after succession: instead of following one
behavior with another, the same behavior is repeated again and again. For
example, taking the repetition of at most one crash results in a potential
in�nite number of crash-and-restart, with the constraint of having at most
one crashed process at any time.

For all operations on predicates, we provide an analogous one for strategies.
We show later that strategies for the delivered predicates, when combined by the
analogous operation, retain important properties on the result of the operation
on the predicates.

De�nition 5 (Operations on strategies). Let f1, f2 be two strategies.

� Their union f1 ∪ f2 , the strategy such that ∀q a local state: (f1 ∪ f2)(q) ,
f1(q) ∨ f2(q).

� Their combination f1
⊗
f2 , {q1

⊗
q2 | q1 ∈ f1 ∧ q2 ∈ f2 ∧ q1.round =

q2.round}, where for q1 and q2 at the same round r, q1
⊗
q2 , 〈r{〈r′, k〉 |

r′ > 0 ∧ k ∈ q1(r′) ∩ q2(r′)}〉
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� Their succession f1  f2 , f1 ∪ f2 ∪ {q1  q2 | q1 ∈ f1 ∧ q2 ∈ f2} where

q1  q2 , 〈q1.round+q2.round, {〈r, k〉 | r > 0∧
(
k ∈ q1(r) if r ≤ q1.round
k ∈ q2(r − q1.round) if r > q1.round

)
}〉

� The repetition of f1, f
ω
1 , {q1  q2  ... qk | k ≥ 1∧q1, q2, ..., qk ∈ f1}.

The goal is to derive new strategies for the resulting model by applying
operations on strategies for the starting models. This allows, in some cases,
to bypass strategies, and deduce the Heard-Of predicate for a given Delivered
predicate from the Heard-Of predicates of its building blocks.

2.3 Executions and Domination

Before manipulating predicates and strategies, we need to de�ne what is an
execution: a speci�c ordering of events corresponding to a delivered collection.

De�nition 6 (Execution). Let Π be a set of n processes. Let the set of tran-
sitions T = {nextj | j ∈ Π} ∪ {deliver(r, k, j) | r ∈ N∗ ∧ k, j ∈ Π} ∪ {stop}.
nextj is the transition for j changing round, deliver(r, k, j) is the transition for
the delivery to j of the message sent by k in round r, stop models a deadlock.
Then, t ∈ Tω is an execution ,

� (Delivery after sending)
∀i ∈ N : t[i] = deliver(r, k, j) =⇒ |{l ∈ [0, i[| t[l] = nextk}| ≥ r − 1

� (Unique delivery)
∀〈r, k, j〉 ∈ (N∗ ×Π ×Π) : |{i ∈ N | t[i] = deliver(r, k, j)}| ≤ 1

� (Once stopped, forever stopped)
∀i ∈ N : t[i] = stop =⇒ ∀j ≥ i : t[j] = stop

Let c be a delivered collection. Then, execs(c), the executions of c ,t an execution

∣∣∣∣∣∣∣∣
∀〈r, k, j〉 ∈ N∗ ×Π ×Π :

(k ∈ c(r, j) ∧ |{i ∈ N | t[i] = nextk}| ≥ r − 1)
⇐⇒
(∃i ∈ N : t[i] = deliver(r, k, j))


For PDel a delivered predicate, we write

execs(PDel) = {execs(c) | c ∈ PDel}.
Let t be an execution, p ∈ Π and i ∈ N. Then the state of p in t after

i transitions is qtp[i] , 〈|{l < i | t[l] = nextp}| + 1, {〈r, k〉 | ∃l < i : t[l] =
deliver(r, k, p)}〉)

Recall that strategies constrain when processes can change round. Thus, the
executions that conform to a strategy change rounds only when allowed by it,
and do it in�nitely often if possible.

De�nition 7 (Executions of a Strategy). Let f be a strategy and t an exe-
cution. Then t is an execution of f , t satis�es:

� (All nexts allowed) ∀i ∈ N,∀p ∈ Π : (t[i] = nextp =⇒ qtp[i] ∈ f)
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� (Fairness) ∀p ∈ Π : |{i ∈ N | t[i] = nextp}| < ℵ0 =⇒ |{i ∈ N | qtp[i] /∈
f}| = ℵ0
For a delivered predicate PDel, we note execsf (PDel) ,

{t | t an execution of f ∧ t ∈ execs(PDel)}.
An important part of this de�nition considers executions where processes can-

not necessarily change round after each delivery. That is, in the case of "waiting
for at most F messages", an execution where more messages are delivered than F
at some round is still an execution of the strategy. This hypothesis captures the
asynchrony of processes, which are not always scheduled right after deliveries.
It is compensated by a strong fairness assumption: if a strategy allows in�nitely
often the change of round, it must eventually happen.

Going back to strategies, not all of them are worth using. Notably, strate-
gies that block forever at some round are worthless. The validity of a strategy
captures the absence o� such an in�nite wait.

De�nition 8 (Validity).
An execution t is valid , ∀p ∈ Π : |{i ∈ N | t[i] = nextp}| = ℵ0.

Let PDel a delivered predicate and f a strategy. f is a valid strategy for
PDel , ∀t ∈ execsf (PDel) : t is a valid execution.

Because in a valid execution no process is ever blocked at a given round, there
are in�nitely many rounds. Hence, the messages delivered before the changes of
round uniquely de�ne a heard-of collection.

De�nition 9 (Heard-Of Collection of Executions and Heard-Of Pred-
icate of Strategies). Let t be a valid execution. ht is the heard-of collection
of t ,

∀r ∈ N∗,∀p ∈ Π : ht(r, p) =

k ∈ Π
∣∣∣∣∣∣ ∃i ∈ N :

 qtp[i].round = r
∧ t[i] = nextp
∧ 〈r, k〉 ∈ qtp[i].mes


Let PDel be a delivered predicate, and f be a valid strategy for PDel. Then

we write PHOf (PDel) for the heard-of predicate composed of the collections of

the executions of f on PDel: PHOf (PDel) , {ht | t ∈ execsf (PDel)}.
Lastly, the heard-of predicate of most interest is the smallest one that can

be generated by a valid strategy on the delivered predicate. The intuition boils
down to two ideas: less collections means more constrained communication, with
more constrained communication meaning more powerful models; and if a heard-
of predicate is contained in all the other predicates generated on this PDel, it
implies them, and thus characterizes all the predicates that can be generated on
this predicate. This notion of smallest predicate is formalized through an order
on strategies and their heard-of predicates.

De�nition 10 (Domination). Let PDel be a delivered predicate and let f and
f ′ be two valid strategies for PDel. Then f dominates f ′ for PDel, written
f ′ ≺PDel f , , PHOf ′(PDel) ⊇ PHOf (PDel).

A greatest element for ≺PDel is called a dominating strategy for PDel.
Given such a strategy f , the dominating predicate for PDel is PHOf (PDel).
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Description Expression HO Proof

At most 1 crash Pcrash
1 =

∞⋃
i=1

Pcrash
1,i HOProd({T ⊆ Π | |T | ≥ n− 1}) [12, Thm 15]

At most F crashes Pcrash
F =

F⊗
j=1

Pcrash
1 HOProd({T ⊆ Π | |T | ≥ n− F}) [12, Thm 15]

At most 1 crash,
which will restart

Precover
1 = Pcrash

1  Ptotal HOProd({T ⊆ Π | |T | ≥ n− 1}) Thm 4

At most F crashes,
which will restart

Precover
F =

F⊗
j=1

Precover
1 HOProd({T ⊆ Π | |T | ≥ n− F}) Thm 4

At most 1 crash,
which can restart

Pcanrecover
1 = Precover

1 ∪ Pcrash
1 HOProd({T ⊆ Π | |T | ≥ n− 1}) Thm 4

At most F crashes,
which can restart

Pcanrecover
F =

F⊗
j=1

Pcanrecover
1 HOProd({T ⊆ Π | |T | ≥ n− F}) Thm 4

No bound on crashes
and restart, with only
1 crash at a time

Precovery
1 = (Pcrash

1 )ω HOProd({T ⊆ Π | |T | ≥ n− 1}) Thm 4

No bound on crashes
and restart, with max
F crashes at a time

Precovery
F =

F⊗
j=1

Precovery
1 HOProd({T ⊆ Π | |T | ≥ n− F}) Thm 4

At most 1 crash,
after round r

Pcrash
1,≥r =

∞⋃
i=r

Pcrash
1,i ⊆ HOProd({T ⊆ Π | |T | ≥ n− 1}) Thm 10

At most F crashes,
after round r

Pcrash
F,≥r =

∞⋃
i=r

Pcrash
F,i ⊆ HOProd({T ⊆ Π | |T | ≥ n− F}) Thm 10

At most F crashes
with no more than
one per round

Pcrash 6=
F =

⋃
i1 6=i2 6=... 6=iF

F⊗
j=1

Pcrash
1,ij ⊆ HOProd({T ⊆ Π | |T | ≥ n− F}) Thm 10

Table 1. A list of delivered predicate built using our operations, and their correspond-
ing heard-of predicate. The HOProduct operator is de�ned in De�nition 15.

2.4 Examples

We now show the variety of models that can be constructed from basic building
blocks. Our basic blocks are the model PDeltotal with only the collection ctotal
where every message is delivered, and the model PDelcrash1,r with at most one
crash that can happen at round r.

De�nition 11 (At most 1 crash at round r). Pcrash1,r ,c ∈ (N∗ ×Π) 7→ P(Π)

∣∣∣∣∣∣∣∣∃Σ ⊆ Π :

|Σ| ≥ n− 1

∧ ∀j ∈ Π

 ∀r′ ∈ [1, r[: c(r′, j) = Π
∧ c(r, j) ⊇ Σ
∧ ∀r′ ≥ r : c(r′, j) = Σ


.

From this family of predicates, various predicates can be built (Table 1).
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3 Oblivious Strategies

The simplest strategies use only information from the messages of the current
round. These strategies that do not remember messages from previous rounds,
do not use messages in advance from future rounds, and do not use the round
number itself.

We call these strategies oblivious. They are simple, the Heard-Of predicates
they implement are relatively easy to compute, and they require little computing
power and memory to implement. Moreover, many examples above are domi-
nated by such a strategy. Of course, there is a price to pay: oblivious strategies
tend to be coarser than general ones.

3.1 Minimal Oblivious Strategy

An oblivious strategy is de�ned by the di�erent subsets of Π from which it has
to receive a message before allowing a change of round.

De�nition 12 (Oblivious Strategy). Let f be a strategy and, ∀q ∈ Q, let
obliv(q) = {k ∈ Π | 〈i, k〉 ∈ q.mes}. f is an oblivious strategy , ∀q, q′ ∈ Q :
obliv(q) = obliv(q′) =⇒ (q ∈ f ⇐⇒ q′ ∈ f). For f an oblivious strategy, let
Nextsf , {obliv(q) | q ∈ f}. It uniquely de�nes f .

We will focus on a speci�c strategy, that dominates the oblivious strategies
for a predicate. This follows from the fact that it waits less than any other valid
oblivious strategy for this predicate.

De�nition 13 (Minimal Oblivious Strategy). Let PDel be a delivered pred-
icate. The minimal oblivious strategy for PDel is fmin ,
{q | ∃c ∈ PDel, ∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p)}.

Lemma 1 (Domination of Minimal Oblivious Strategy). Let PDel be a
PDel and fmin be its minimal oblivious strategy. Then fmin is a dominating
oblivious strategy for PDel.

Proof (Proof idea). fmin is valid, because for every possible set of received mes-
sages in a collection of PDel, it accepts the corresponding oblivious state by
de�nition of minimal oblivious strategy. It is dominating among oblivious strate-
gies because every other valid oblivious strategy must allow the change of round
when fmin does it: it contains fmin. If an oblivious strategy does not contain
fmin, then there is a collection of PDel in which at a given round, a certain
process might receive exactly the messages for the oblivious state accepted by
fmin and not by f . This entails that f is not valid.

3.2 Operations Maintain Minimal Oblivious Strategy

As teased above, minimal oblivious strategies behave nicely under the proposed
operations. That is, they give minimal oblivious strategies of resulting delivered



10 A. Shimi, A. Hurault, P. Queinnec

predicates. One speci�city of minimal oblivious strategies is that there is no need
for the succession operation on strategies, nor for the repetition. An oblivious
strategy has no knowledge about anything but the messages of the current round,
and not even its round number, so it is impossible to distinguish a union from a
succession, or a repetition from the initial predicate itself.

Theorem 1 (Minimal Oblivious Strategy for Union and Succession).
Let PDel1, PDel2 be two delivered predicates, f1 and f2 the minimal oblivious
strategies for, respectively, PDel1 and PDel2. Then f1∪f2 is the minimal obliv-
ious strategy for PDel1 ∪ PDel2 and PDel1  PDel2.

Proof (Proof idea). Structurally, all proofs in this section consist in showing
equality between the strategies and the minimal oblivious strategy for the de-
livered predicate. In a union, the strategy can never know in which PDel it is.
Similarly it can never know if the succession happened already or not in the suc-
cession. Thus, the minimal oblivious strategy must wait for any set of messages
present in any collection, that is any set of messages in a collection of PDel1
or PDel2. Given that f1 and f2 are the minimal oblivious strategies of PDel1
and PDel2, they accept exactly the states with one of these sets of current mes-
sages. And thus f1∪f2 is the minimal oblivious strategy for PDel1∪PDel2 and
PDel1  PDel2.

Theorem 2 (Minimal Oblivious Strategy for Repetition). Let PDel be
a delivered predicate, and f be its minimal oblivious strategy. Then f is the
minimal oblivious strategy for PDelω.

Proof (Proof idea). The intuition is the same as for union and succession. Since
repetition involves only one PDel, the sets of received messages do not change
and f is the minimal oblivious strategy.

For combination, an additional hypothesis is needed: in addition to symme-
try over processes, we need symmetry over rounds, because oblivious strategies
cannot know the round.

De�nition 14 (Totally Symmetric PDel). Let PDel be a delivered predi-
cate. PDel is totally symmetric , ∀c ∈ PDel, ∀r > 0,∀p ∈ Π,∀r′ > 0,∀q ∈
Π,∃c′ ∈ PDel : c(r, p) = c′(r′, q)

Combination is di�erent because combining collections is done round by
round. As oblivious strategies do not depend on the round, the combination
of oblivious strategies creates the same combination of received messages for
each round. We thus need these combinations to be independent of the round �
to be possible at each round � to reconcile those two elements.

Theorem 3 (Minimal Oblivious Strategy for Combination).
Let PDel1, PDel2 be two totally symmetric delivered predicates, f1 and f2 the
minimal oblivious strategies for, respectively, PDel1 and PDel2. Then f1

⊗
f2

is the minimal oblivious strategy for PDel1
⊗
PDel2.
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Proof (Proof idea). The oblivious states of PDel1
⊗
PDel2 are the combination

of an oblivious state of PDel1 and of one of PDel2 at the same round, for the
same process. Thanks to total symmetry, this translates into the intersection of
any oblivious state of PDel1 with any oblivious state of PDel2. Since f1 and
f2 are the minimal oblivious strategy, they both accept exactly the oblivious
states of PDel1 and PDel2 respectively. Thus, f1

⊗
f2 accept all combinations of

oblivious states of PDel1 and PDel2, and thus is the minimal oblivious strategy
of PDel1

⊗
PDel2.

3.3 Computing Heard-Of Predicates

The computation of the heard-of predicate generated by an oblivious strategy
is easy thanks to a characteristic of this HO: it is a product of sets of possible
messages.

De�nition 15 (Heard-Of Product). Let S ⊆ P(Π). The heard-of product
generated by S, HOProd(S) , {h | ∀p ∈ Π,∀r > 0 : h(r, p) ∈ S }.

Lemma 2 (Heard-Of Predicate of an Oblivious Strategy). Let PDel be
a delivered predicate containing ctot and let f be a valid oblivious strategy for
PDel. Then PHOf (PDel) = HOProd(Nextsf ).

Proof. Proved in [12, Theorem 20, Section 4.1].

Thanks to this characterization, the heard-of predicate generated by the min-
imal strategies for the operations is computed in terms of the heard-of predicate
generated by the original minimal strategies.

Theorem 4 (Heard-Of Predicate of Minimal Oblivious Strategies). Let
PDel, PDel1, PDel2 be delivered predicates containing ctot. Let f, f1, f2 be their
respective minimal oblivious strategies. Then:

� PHOf1∪f2(PDel1 ∪ PDel2) = PHOf1∪f2(PDel1  PDel2)
= HOProd(Nextsf1 ∪Nextsf2).

� If PDel1 or PDel2 are totally symmetric, PHOf1
⊗
f2(PDel1

⊗
PDel2) =

HOProd({n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}).
� PHOf (PDel

ω) = PHOf (PDel).

Proof (Proof idea). We apply Lemma 2. The containment of ctot was shown in
the proof of Theorem 5. As for the equality of the oblivious states, it follows
from the intuition in the proofs of the minimal oblivious strategy in the previous
section.

3.4 Domination by an Oblivious Strategy

From the previous sections, we can compute the Heard-Of predicate of the dom-
inating oblivious strategies for our examples. We �rst need to give the minimal
oblivious strategy for our building blocks PDelcrash1 and PDeltotal.
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De�nition 16 (Waiting for n−F messages). The strategy to wait for n−F
messages is: fn,F , {q ∈ Q | |obliv(q)| ≥ n− F}

For all F < n, fn,F is the minimal oblivious strategy for PDelcrashF (shown
by Shimi et al. [12, Thm. 17]). For PDeltotal, since every process receives all the
messages all the time, the strategy waits for all the messages (fn,0).

Using these strategies, we deduce the heard-of predicates of dominating obliv-
ious strategies for our examples.

� For PDelrecover1 , PDelcrash1  PDeltotal, the minimal oblivious strategy
frecover1 = fn,1 ∪ fn,0 = fn,1. This entails that
PHOfrecover

1
= HOProd({T ⊆ Π | |T | ≥ n− 1}).

� For PDelcanrecover1 , PDelrecover1 ∪PDelcrash1 , the minimal oblivious strat-
egy f canrecover1 = frecover1 ∪ fn,1 = fn,1. This entails that
PHOfcanrecover

1
= HOProd({T ⊆ Π | |T | ≥ n− 1}).

� For PDelcrash1

⊗
PDelcanrecover1 the minimal oblivious strategy

f = fn,1
⊗
f canrecover1 = fn,1

⊗
fn,1 = fn,2. This entails that

PHOf = HOProd({T ⊆ Π | |T | ≥ n− 2}).

The computed predicate is the predicate of the dominating oblivious strategy.
But the dominating strategy might not be oblivious, and this predicate might
be too weak. The following result shows that PDelcrash1 and PDeltotal satisfy
conditions that imply their domination by an oblivious strategy. Since these con-
ditions are invariant by our operations, all PDel constructed with these building
blocks are dominated by an oblivious strategy.

Theorem 5 (Domination by Oblivious for Operations).
Let PDel, PDel1, PDel2 be delivered predicates that satisfy:

� (Total collection) They contains the total collection ctot,
� (Symmetry up to a round) ∀c a collection in the predicate, ∀p ∈ Π,∀r >

0,∀r′ > 0,∃c′ a collection in the predicate: c′[1, r′− 1] = ctot[1, r
′− 1]∧∀q ∈

Π : c′(r′, q) = c(r, p)

Then PDel1 ∪ PDel2, PDel1
⊗
PDel2, PDel1  PDel2, PDel

ω satisfy the
same two conditions and are dominated by oblivious strategies.

Both Pcrash1 from Table 1 and Ptotal = {ctot} satisfy this condition. So do
all the �rst 8 examples from Table 1, since they are built from these two.

4 Conservative Strategies

We now broaden our class of considered strategies, by allowing them to consider
past and present rounds, as well as the round number itself. This is a gener-
alization of oblivious strategies, that tradeo� simplicity for expressivity, while
retaining a nice structure. Even better, we show that both our building blocks
and all the predicates built from them are dominated by such a strategy. For the
examples then, no expressivity is lost.
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4.1 Minimal Conservative Strategy

De�nition 17 (Conservative Strategy). Let f be a strategy, and ∀q ∈ Q, let
cons(q) , 〈q.round, {〈r, k〉 ∈ q.mes | r ≤ q.round}〉. Then f is a conservative
strategy , ∀q, q′ ∈ Q : cons(q) = cons(q′) =⇒ (q ∈ f ⇐⇒ q′ ∈ f).

We write NextsRf , {cons(q) | q ∈ f} for the set of conservative states in f .
This uniquely de�nes f .

In analogy with the case of oblivious strategies, we can de�ne a minimal
conservative strategy of PDel, and it is a strategy dominating all conservative
strategies for this delivered predicate.

De�nition 18 (Minimal Conservative Strategy). Let PDel be a delivered
predicate. Then the minimal conservative strategy for PDel is fmin , the
conservative strategy such that f = {q ∈ Q | ∃c ∈ PDel, ∃p ∈ Π,∀r ≤ q.round :
q(r) = c(r, p)}.

Lemma 3 (Domination of Minimal Conservative Strategy). Let PDel
be a delivered predicate and fmin be its minimal conservative strategy. Then fmin
dominates the conservative strategies for PDel.

Proof (Proof idea). Analogous to the case of minimal oblivious strategies: it is
valid because it allow to change round for each possible conservative state (the
round and the messages received for this round and before) of collections in
PDel. And since every other valid conservative strategy f must accept these
states (or they would block forever in some execution of a collection of PDel),
we have that f contains fmin and thus that fmin dominates f .

4.2 Operations Maintain Minimal Conservative Strategies

Like oblivious strategies, minimal conservative strategies give minimal conserva-
tive strategies of resulting delivered predicates.

Theorem 6 (Minimal Conservative Strategy for Union).
Let PDel1, PDel2 be two delivered predicates, f1 and f2 the minimal conserva-
tive strategies for, respectively, PDel1 and PDel2. Then f1 ∪ f2 is the minimal
conservative strategy for PDel1 ∪ PDel2.

Proof (Proof idea). Each pre�x of a collection in PDel1 ∪ PDel2 comes from
either PDel1 or PDel2, and thus is accepted by f1 or f2. And any state accepted
by f1 ∪ f2 corresponds to some pre�x of PDel1 or PDel2.

For the other three operations, slightly more structure is needed on the pred-
icates. More precisely, they have to be independent of the processes. Any pre�x
of a process p in a collection of the predicate is also the pre�x of any other pro-
cess q in a possibly di�erent collection of the same PDel. Hence, the behaviors
(fault, crashes, loss) are not targeting speci�c processes. This restriction �ts the
intuition behind many common fault models.
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De�nition 19 (Symmetric PDel). Let PDel be a delivered predicate. PDel
is symmetric , ∀c ∈ PDel, ∀p ∈ Π,∀r > 0,∀q ∈ Π,∃c′ ∈ PDel, ∀r′ ≤ r :
c′(r′, q) = c(r′, p)

Theorem 7 (Minimal Conservative Strategy for Combination).
Let PDel1, PDel2 be two symmetric delivered predicates, f1 and f2 the minimal
conservative strategies for, respectively, PDel1 and PDel2. Then f1

⊗
f2 is the

minimal conservative strategy for PDel1
⊗
PDel2.

Proof (Proof idea). Since f1 and f2 are the minimal conservative strategies of
PDel1 and PDel2, Nexts

Rf1 is the set of the conservative states of pre�xes of
PDel1 and NextsRf2 is the set of the conservative states of pre�xes of PDel2.
Also, the states accepted by f1

⊗
f2 are the combination of the states accepted

by f1 and the states accepted by f2. And the pre�xes of PDel1
⊗
PDel2 are

the pre�xes of PDel1 combined with the pre�xes of PDel2 for the same pro-
cess. Thanks to symmetry, we can take a pre�x of PDel2 and any process, and
�nd a collection such that the process has that pre�x. Therefore the combined
pre�xes for the same process are the same as the combined pre�xes of PDel1
and PDel2. Thus, Nexts

R
f1

⊗
f2

is the set of conservative states of pre�xes of

PDel1
⊗
PDel2, and f1

⊗
f2 is its minimal conservative strategy.

Theorem 8 (Minimal Conservative Strategy for Succession).
Let PDel1, PDel2 be two symmetric delivered predicates, f1 and f2 the minimal
conservative strategies for, respectively, PDel1 and PDel2. Then f1  f2 is the
minimal conservative strategy for PDel1  PDel2.

Proof (Proof idea). Since f1 and f2 are the minimal conservative strategies of
PDel1 and PDel2, Nexts

Rf1 is the set of the conservative states of pre�xes of
PDel1 and NextsRf2 is the set of the conservative states of pre�xes of PDel2.
Also, the states accepted by f1  f2 are the succession of the states accepted by
f1 and the states accepted by f2. And the pre�xes of PDel1  PDel2 are the
successions of pre�xes of PDel1 and pre�xes of PDel2 for the same process.
But thanks to symmetry, we can take a pre�x of PDel2 and any process, and
�nd a collection such that the process has that pre�x.

Therefore the succession of pre�xes for the same process are the same as
the succession of pre�xes of PDel1 and PDel2. Thus, Nexts

R
f1 f2 is the set of

conservative states of pre�xes of PDel1  PDel2, and is therefore its minimal
conservative strategy.

Theorem 9 (Minimal Conservative Strategy for Repetition).
Let PDel be a symmetric delivered predicate, and f be its minimal conservative
strategy. Then fω is the minimal conservative strategy for PDelω.

Proof (Proof idea). The idea is the same as in the succession.

4.3 Computing Heard-Of Predicates

Here we split from the analogy with oblivious strategies: the heard-of predicate
of conservative strategies is hard to compute, as it dependss in intricate ways on
the delivered predicate itself.
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Yet it is still possible to compute interesting information on this HO: upper
bounds. These are overapproximations of the actual HO, but they can serve for
formal veri�cation.

Theorem 10 (Upper Bounds on HO of Minimal Conservative Strate-
gies). Let PDel, PDel1, PDel2 be delivered predicates containing ctot.
Let f cons, f cons1 , f cons2 be their respective minimal conservative strategies,
and fobliv, fobliv1 , fobliv2 be their respective minimal oblivious strategies. Then:

� PHOfcons
1 ∪fcons

2
(PDel1 ∪ PDel2) ⊆ HOProd(Nextsfobliv

1
∪Nextsfobliv

2
).

� PHOfcons
1  fcons

2
(PDel1  PDel2) ⊆ HOProd(Nextsfobliv

1
∪Nextsfobliv

2
).

� PHOfcons
1

⊗
fcons
2

(PDel1
⊗
PDel2) ⊆ HOProd({n1 ∩ n2 | n1 ∈ Nextsfobliv

1
∧

n2 ∈ Nextsfobliv
2
}).

� PHO(fcons)ω (PDel
ω) ⊆ HOProd(Nextsfobliv ).

Proof (Proof idea). These bounds follow from the fact that an oblivious strategy,
is a conservative strategy, and thus the minimal conservative strategy dominates
the minimal oblivious strategy.

5 Conclusion

To summarize, we propose operations on delivered predicates that allow the con-
struction of complex predicates from simpler ones. The corresponding operations
on strategies behave nicely regarding dominating strategies, for the conservative
and oblivious strategies. This entails bounds and characterizations of the domi-
nating heard-of predicate for the constructions.

What needs to be done next comes in two kinds: �rst, the logical continuation
is to look for constraints on delivered predicates for which we can compute
the dominating heard-of predicate of conservative strategies. More ambitiously,
we will study strategies looking in the future, i.e. strategies that can take into
account messages from processes that have already reached a strictly higher
round than the recipient. These strategies are useful for inherently asymmetric
delivered predicates. For example, message loss is asymmetric, in the sense that
we cannot force processes to receive the same set of messages.
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A Tools

A.1 Timing Functions

A timing function of an execution captures the round at which a message is
delivered: for a message sent in round r′ by k to j, time(r′, k, j) is the round at
which this message is delivered to j. Note that time(r′, k, j) = 0 if and only if
no message sent from k to j at round r′ is delivered in this execution.

De�nition 20 (Timing Function). A timing function is a function N∗ ×
Π ×Π 7→ N.

For t an execution, the timing function of t, timet , the timing function
such that ∀r > 0,∀r′ > 0,∀k, j ∈ Π : timet(r

′, k, j) = r ⇐⇒ (∃i ≥ 0 : t[i] =
deliver(r′, k, j) ∧ qtj [i].round = r).

The standard execution reorders deliveries and changes of round such that
all the deliveries for a given round happen before the changes of round for all
processes.

De�nition 21 (Standard Execution of a timing function). Let time be a
timing function and ord be any function taking a set and returning an ordered
sequence of its elements. The speci�c ordering doesn't matter.

The standard execution with timing time is sttime ,
∏
r∈N∗

delsr.nexts,

where delsr = ord({deliver(r′, k, j) | r′ > 0 ∧ k, j ∈ Π ∧ time(r′, k, j) = r}) and
nexts = ord({nextp | p ∈ Π}).

Lemma 4 (Correctness of Standard Execution with Timing). Let time
be a timing function. Then (∀r > 0,∀k, j ∈ Π : time(r, k, j) = 0∨ time(r, k, j) ≥
r) =⇒ sttime is an execution.

Proof. � (Delivered after sending) Let r > 0 and k, j ∈ Π. If time(r, k, j) =
0, then the message is never delivered, and we don't have to consider it. If not,
then by hypothesis time(r, k, j) ≥ r. This means ∃i ≥ r : deliver(r, k, j) ∈
delsi.
By construction of the standard execution, there are i−1 occurrences of the
sequence nexts before the sequence delsi. This means there are i−1 ≥ r−1
nextk before, which allows us to conclude.

� (Delivered only once) Let r > 0 and k, j ∈ Π. If ∃i ≥ 0 : sttime[i] =
deliver(r, k, j), then it is in delstime(r,k,j). We conclude that there is only
one delivery of this message.

� (Once stopped, forever stopped) The standard execution does not con-
tain any stop.

Lemma 5 (Heard-Of Collection of Timing Function). Let t be a valid
execution, and time be its timing function. Then ∀r > 0,∀p ∈ Π : ht(r, p) =
{q ∈ Π | time(r, q, p) ∈ [1, r]}.
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Proof. Let i ≥ 0 such that ∃p ∈ Π : t[i] = nextp. Let r = qtp[i].round. We show
both side of ht(r, p) = {q ∈ Π | time(r, q, p) ∈ [1, r]}.

� Let q ∈ ht(r, p). Then it is delivered in a round ≤ r, and thus time(r, q, p) ∈
[1, r].

� Let q ∈ Π such that time(r, q, p) ∈ [1, r]. Then by de�nition of time, the
message sent by q at round r is delivered to p in t at most at round r. Thus,
it is in the messages from the current round when going to round r+1, and
q ∈ ht(r, p).

B Proofs for Oblivious Strategies

B.1 Minimal Oblivious Strategies

We use a necessary and su�cient condition for an oblivious strategy to be valid
in the rest of the proofs.

Lemma 6 (Necessary and Su�cient Condition for Validity of a Oblivi-
ous Strategy). Let PDel be a delivered predicate and f be an oblivious strategy.
Then f is valid for PDel ⇐⇒ f ⊇ {q | ∃c ∈ PDel, ∃p ∈ Π,∃r > 0 : obliv(q) =
c(r, p)}.

Proof. From the version in OPODIS 2018, f has to satisfy ∀c ∈ PDel, ∀r >
0,∀p ∈ Π : c(r, p) ∈ Nextsf .

We show the equivalence of this condition with our own, which allow us to
conclude by transitivity of equivalence.

� (=⇒) We assume our condition holds and prove the one form OPODIS 2018.
Let c ∈ PDel, r > 0 and p ∈ Π: we want to show that c(r, p) ∈ Nextsf . That
is to say, that all states whose present corresponds to this oblivious state are
accepted by f .
Let q such that obliv(q) = c(r, p). We have the collection c, the round r and
the process p to apply our condition, and thus q ∈ f .
Hence, c(r, p) ∈ Nextsf .

� (⇐=) We assume the condition from OPODIS 2018 holds and we prove ours.
Let q such that ∃c ∈ PDel, ∃p ∈ Π,∃r ≤ q.round : obliv(q) = c(r, p). By
hypothesis, we have c(r, p) ∈ Nextsf .
We conclude that q ∈ f .

Lemma ((1 Domination of Minimal Oblivious Strategy). Let PDel be
a PDel and fmin be its minimal oblivious strategy. Then fmin is a dominating
oblivious strategy for PDel.

Proof. First, fmin is valid for PDel by application of Lemma 6. Next, we take
another oblivious strategy f , which is valid for PDel. Lemma 6 now gives us
that fmin ⊆ f . Hence, when fmin allow a change of round, so does f . This entails
that all executions of fmin for PDel are also executions of f for PDel, and thus
that heard-of predicate generated by fmin is contained in the one generated by
f .
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B.2 Operations Maintain Minimal Oblivious Strategies

Theorem ((1) Minimal Oblivious Strategy for Union and Succession).
Let PDel1, PDel2 be two delivered predicates, f1 the minimal oblivious strategy
for PDel1, and f2 the minimal oblivious strategy for PDel2. Then f1 ∪ f2 is the
minimal oblivious strategy for PDel1 ∪ PDel2 and PDel1  PDel2.

Proof. We �rst show that the minimal oblivious strategies of PDel1 ∪ PDel2
and PDel1  PDel2 are equal. Hence, we prove {q | ∃c ∈ PDel1 ∪ PDel2,∃p ∈
Π,∃r > 0 : obliv(q) = c(r, p)} = {q | ∃c ∈ PDel1  PDel2,∃p ∈ Π,∃r > 0 :
obliv(q) = c(r, p)}.

� (⊆) Let q such that ∃c ∈ PDel1 ∪PDel2,∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p).
• If c ∈ PDel1, then we take c2 ∈ PDel2 c′ = c[1, r].c2. Since c

′ ∈ c c2,
we have c′ ∈ PDel1  PDel2. And by de�nition of c′, c′(r, p) = c(r, p).
We thus have c′, p and r showing that q is in the set on the right.

• If c ∈ PDel2, then c ∈ PDel1  PDel2 We thus have c, p and r showing
that q is in the set on the right.

� (⊇) Let q such that ∃c ∈ PDel1  PDel2,∃p ∈ Π,∃r > 0 : obliv(q) =
c(r, p).
• If c ∈ PDel2, then c ∈ PDel1 ∪PDel2. We thus have c, p and r showing
that q is in the set on the left.

• If c /∈ PDel2, there exist c1 ∈ PDel1, c2 ∈ PDel2 and r′ > 0 such that
c = c1[1, r

′].c2.
∗ If r ≤ r′, then by de�nition of c, we have c(r, p) = c1(r, p). We thus
have c1, p and r showing that q is in the set on the left.

∗ If r > r′, then c(r, p) = c2(r − r′, p) We thus have c2, p and (r − r′)
showing that q is in the set on the left.

We show that f1∪f2 = {q | ∃c ∈ PDel1∪PDel2,∃p ∈ Π,∃r > 0 : obliv(q) =
c(r, p)}, which allows us to conclude by De�nition 13.

� Let q ∈ f1 ∪ f2. We �x q ∈ f1 (the case q ∈ f2 is completely symmetric).
Then because f1 is the minimal oblivious strategy of PDel1, by application
of Lemma 6, ∃c1 ∈ PDel1,∃p ∈ Π,∃r > 0 such that c1(r, p) = obliv(q).
c1 ∈ PDel1 ⊆ PDel1 ∪ PDel2. We thus have c1, p and r showing that q is
in the minimal oblivious strategy for PDel1 ∪ PDel2.

� Let q such that ∃c ∈ PDel1 ∪ PDel2,∃p ∈ Π,∃r > 0 : c(r, p) = obliv(q). By
de�nition of union, c must be in PDel1 or in c ∈ PDel2; we �x c ∈ PDel1
(the case PDel2 is symmetric).
Then De�nition 13 gives us that q is in the minimal oblivious strategy of
PDel1, that is f1. We conclude that q ∈ f1 ∪ f2.

Theorem ((2) Minimal Oblivious Strategy for Repetition). Let PDel
be a delivered predicate, and f be its minimal oblivious strategy. Then f is the
minimal oblivious strategy for PDelω.

Proof. We show that f = {q | ∃c ∈ PDelω,∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p)},
which allows us to conclude by De�nition 13.
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� (⊆) Let q ∈ f . By minimality of f for PDel, ∃c ∈ PDel, ∃p ∈ Π,∃r > 0 :
obliv(q) = c(r, p).
We take c′ ∈ PDelω such that c1 = c and r2 = r; the other ci and ri don't
matter for the proof. By de�nition of repetition, we get c′(r, p) = c(r, p) =
obliv(q).
We have c′, p and r showing that q is in the minimal oblivious strategy of
PDelω.

� (⊇) Let q such that ∃c ∈ PDelω,∃p ∈ Π,∃r > 0 : obliv(q) = c(r, p). By
de�nition of repetition, there are ci ∈ PDel and 0 < ri < ri+1 such that
r ∈ [ri + 1, ri+1] and c(r, p) = ci(r − ri, p).
We have found ci, p and (r − ri) showing that q is in the minimal oblivious
strategy for PDel. And since f is the minimal oblivious strategy for PDel,
we get q ∈ f .

Theorem ((3) Minimal Oblivious Strategy for Combination). Let PDel1, PDel2
be two totally symmetric delivered predicate, f1 the minimal oblivious strategy
for PDel1, and f2 the minimal oblivious strategy for PDel2. Then f1

⊗
f2 is

the minimal oblivious strategy for PDel1
⊗
PDel2.

Proof. We show that f1
⊗
f2 = {q | ∃c ∈ PDel1

⊗
PDel2,∃p ∈ Π,∃r > 0 :

obliv(q) = c(r, p)}, which allows us to apply Lemma 13.

� Let q ∈ f1
⊗
f1. Then ∃q1 ∈ f1,∃q2 ∈ f2 such that q = q1

⊗
q2. This also

means that q1.round = q2.round = q.round.
By minimality of f1 and f2, ∃c1 ∈ PDel1,∃p1 ∈ Π,∃r1 > 0 : c1(r1, p1) =
obliv(q1) and ∃c2 ∈ PDel2,∃p2 ∈ Π,∃r2 > 0 : c2(r2, p2) = obliv(q2).
Moreover, total symmetry of PDel2 ensures that ∃c′2 ∈ PDel2 : c′2(r1, p1) =
c2(r2, p2).
We take c = c1

⊗
c′2. obliv(q) = obliv(q1)∩obliv(q2) = c1(r1, p1)∩c2(r2, p2) =

c1(r1, p1) ∩ c′2(r1, p1) = c(r1, p1).
We have c, p1 and r1 showing that q is in the minimal oblivious strategy for
PDel1

⊗
PDel2.

� Let q such that ∃c ∈ PDel1
⊗
PDel2,∃p ∈ Π,∃r > 0 : c(r, p) = obliv(q). By

de�nition of Combination, ∃c1 ∈ PDel1,∃c2 ∈ PDel2 : c = c1
⊗
c2.

We take q1 such that q1.round = r, obliv(q1) = c1(r, p) and ∀r′ 6= r : q1(r
′) =

q(r′); we also take q2 such that q2.round = r, obliv(q2) = c2(r, p) and ∀r′ 6=
r : q2(r

′) = q(r′).
Then q = q1

⊗
q2. And since f1 and f2 are the minimal oblivious strategies

of PDel1 and PDel2 respectively, we have q1 ∈ f1 and q2 ∈ f2.
We conclude that q ∈ f1

⊗
f2.

B.3 Computing Heard-Of Predicates

Theorem ((4) Heard-Of Predicate of Minimal Oblivious Strategies).
Let PDel, PDel1, PDel2 be delivered predicates containing ctot. Let HO,HO1, HO2

be their respective HO, and let f, f1, f2 be their respective minimal oblivious
strategies. Then:
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� The HO generated by f1 ∪ f2 on PDel1 ∪ PDel2, and on PDel1  PDel2
is the HO product generated by Nextsf1 ∪Nextsf2 .

� The HO generated by f1
⊗
f2 on PDel1

⊗
PDel2, if either PDel1 or PDel2

is totally symmetric, is the HO product generated by {n1∩n2 | n1 ∈ Nextsf1∧
n2 ∈ Nextsf2}.

� The HO generated by f on PDelω is HO.

Proof. Obviously, we want to apply Lemma 2. Then we �rst need to show that
our PDels contain ctot.

� If PDel1 and PDel2 contain ctot, then PDel1 ∪ PDel2 trivially contains it
too.

� If PDel1 and PDel2 contain ctot, then PDel1
⊗
PDel2 contains ctot

⊗
ctot =

ctot.

� If PDel1 and PDel2 contain ctot, then PDel1  PDel2 ⊇ PDel2 contains
it too.

� If PDel contains ctot, we can recreate ctot by taking all ci = ctot and
whichever ri. Thus, PDel

ω contains ctot.

Next, we need to show that the Nextsf for the strategies corresponds to the
generating sets in the theorem.

• We show Nextsf1∪f2 = Nextsf1 ∪Nextsf2 , and thus that PHOf1∪f2(PDel1 ∪
PDel2) = HOProd(Nextsf1∪f2) = HOProd(Nextsf1 ∪Nextsf2)
• Let n ∈ Nextsf1∪f2 . Then ∃q ∈ f1 ∪ f2 : obliv(q) = n. By de�nition of
union, q ∈ f1 or q ∈ f2. We �x q ∈ f1 (the case q ∈ f2 is symmetric).
Then n ∈ Nextsf1 .
We conclude that n ∈ Nextsf1 ∪Nextsf2 .

• Let n ∈ Nextsf1 ∪ Nextsf2 . We �x n ∈ Nextsf1 (as always, the other
case is symmetric). Then ∃q ∈ f1 : obliv(q) = n. As q ∈ f1 implies
q ∈ f1 ∪ f2, we conclude that n ∈ Nextsf1∪f2 .

• We show Nextsf1
⊗
f2 = {n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}.

• Let n ∈ Nextsf1 ⊗
f2 . Then ∃q ∈ f1

⊗
f2 : obliv(q) = n. By de�nition of

combination, ∃q1 ∈ f1,∃q2 ∈ f2 : q1.round = q2.round = q.round ∧ q =
q1
⊗
q2. This means n = obliv(q) = obliv(q1) ∩ obliv(q2).

We conclude that n ∈ {n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}.
• Let n ∈ {n1 ∩ n2 | n1 ∈ Nextsf1 ∧ n2 ∈ Nextsf2}. Then ∃n1 ∈
Nextsf1 ,∃n2 ∈ Nextsf2 : n = n1 ∩ n2. Because f1 and f2 are oblivi-
ous strategies, we can �nd q1 ∈ f1 such that obliv(q1) = n1, q2 ∈ f2 such
that obliv(q2) = n2, and q1.round = q2.round.

Then q = q1
⊗
q2 is a state of f1

⊗
f2. We have obliv(q) = n1 ∩ n2 = n.

We conclude that n ∈ Nextsf1 ⊗
f2 .

• Trivially, Nextsf = Nextsf .
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B.4 Domination by an Oblivious Strategy

To prove Theorem 5, we �rst show that the condition implies the domination by
an oblivious strategy.

Lemma 7 (Su�cient Condition to be Dominated by an Oblivious Strat-
egy). Let PDel be a delivered predicate. If

� (Total collection) PDel contains the total collection ctot,
� (Symmetry up to a round) ∀c ∈ PDel, ∀p ∈ Π,∀r > 0,∀r′ > 0,∃c′ ∈
PDel : c′[1, r′ − 1] = ctot[1, r

′ − 1] ∧ ∀q ∈ Π : c′(r′, q) = c(r, p)

then PDel is dominated by an oblivious strategy.

Proof. Proved in [12, Thm 24].

Theorem ((5) Domination by Oblivious for Operations). Let PDel, PDel1, PDel2
be delivered predicates that satisfy:

� (Total collection) They contains the total collection ctot,
� (Symmetry up to a round) ∀c a collection in the predicate, ∀p ∈ Π,∀r >

0,∀r′ > 0,∃c′ a collection in the predicate: c′[1, r′− 1] = ctot[1, r
′− 1]∧∀q ∈

Π : c′(r′, q) = c(r, p)

Then PDel1 ∪ PDel2, PDel1
⊗
PDel2, PDel1  PDel2, PDel

ω satisfy the
same two conditions and are dominated by oblivious strategies.

Proof (Proof idea). Thanks to Lemma 7, we only have to show that the condition
is maintained by the operations; the domination by an oblivious strategy follows
directly.

For containing ctot: ctot∪ ctot = ctot; ctot
⊗
ctot = ctot; ctot  ctot = ctot; and

the succession of ctot with itself again and again gives ctot.
As for symmetry up to a round, we show its invariance. Let p ∈ Π, r > 0 and

r′ > 0.

� If c ∈ PDel1 ∪PDel2, then c ∈ PDel1 ∨ c ∈ PDel2. We can then apply the
condition for one of them to get c′.

� If c ∈ PDel1
⊗
PDel2, then ∃c1 ∈ PDel1,∃c2 ∈ PDel2 : c = c1

⊗
c2.

Applying the condition for c1 and c2 gives us c′1 and c′2, and c′ = c′1
⊗
c′2

satis�es the condition for c.
� If c ∈ PDel1  PDel2, then ∃c1 ∈ PDel1,∃c2 ∈ PDel2,∃rchange ≥ 0 :
c = c1[1, rchange].c2. Applying the condition for c1 at r and r′ and for c2
at r − rchange and r′ − rchange gives us c′1 and c′2, and c

′ = c′1[1, rchange].c
′
2

satis�es the condition for c.
� If c ∈ PDelω, then ∃(ci)i∈N∗ ,∃(ri)i∈N∗ , the collections and indices de�ning
c. Then let i the integer such that r ∈ [ri + 1, ri+1]. Applying the condition
for ci′ at r − ri′ and r′ − ri′ with i′ ≤ i gives us c′i′ , and c′ = c′1[1, r2 −
r1] · · · c′i[1, ri+1 − ri].ci+1[1, ri+2 − ri+1] · · · satis�es the condition for c.
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Proof. Thanks to Lemma 7, we only have to show that the condition is main-
tained by the operations; the domination by an oblivious strategy follows di-
rectly.

We �rst prove that ctot is still in the results of the operations.

� If PDel1 and PDel2 contain ctot, then PDel1 ∪ PDel2 trivially contains it
too.

� If PDel1 and PDel2 contain ctot, then PDel1
⊗
PDel2 contains ctot

⊗
ctot =

ctot.

� If PDel1 and PDel2 contain ctot, then PDel1  PDel2 ⊇ PDel2 contains
it too.

� If PDel contains ctot, we can recreate ctot by taking all ci = ctot and
whichever ri. Thus, PDel

ω contains ctot.

Then we show the invariance of the symmetry up to a round.

� Let c ∈ PDel1 ∪ PDel2. Thus c ∈ PDel1 or c ∈ PDel2. We �x c ∈ PDel1
(the other case is symmetric). Then for p ∈ Π, r > 0 and r′ > 0, we get a
c′ ∈ PDel1. satisfying the condition. And since PDel1 ⊆ PDel1 ∪ PDel2,
we get c′ ∈ PDel1 ∪ PDel2.
We conclude that the condition still holds for PDel1 ∪ PDel2.

� Let c ∈ PDel1
⊗
PDel2. Then ∃c1 ∈ PDel1,∃c2 ∈ PDel2 : c = c1

⊗
c2.

For p ∈ Π, r > 0 and r′ > 0, our hypothesis on PDel1 and PDel2 ensures
that there are c′1 ∈ PDel1 satisfying the condition for c1 and c′2 ∈ PDel2
satisfying the condition for c2.

We argue that c′ = c′1
⊗
c′2 satis�es the condition for c. Indeed, ∀r′′ <

r′,∀q ∈ Π : c(r′′, q) = c′1(r
′′, q)

⊗
c′2(r

′′, q) = Π and ∀q ∈ Π : c(r′, q) =
c′1(r

′, q)
⊗
c′2(r

′, q) = c1(r, p)
⊗
c2(r, p) = c(r, p).

We conclude that the condition still holds for PDel1
⊗
PDel2.

� Let c ∈ PDel1  PDel2. Since if c ∈ PDel2, the condition trivially holds
by hypothesis, we study the case where succession actually happens. Hence,
∃c1 ∈ PDel1,∃c2 ∈ PDel2,∃rchange > 0 : c = c1[1, rchange].c2. For p ∈
Π, r > 0 and r′ > 0, we separate two cases.

• if r ≤ rchange, then our hypothesis on PDel1 ensures that there is c′1 ∈
PDel1 satisfying the condition for c1. We argue that c′ = c′1[1, r

′].c2 ∈
PDel1  PDel2 satis�es the condition for c.

Indeed, ∀r′′ < r′,∀q ∈ Π : c′(r′′, q) = c′1(r
′′, q) = Π, and ∀q ∈ Π :

c′(r′, q) = c1(r, p) = c(r, p)

• if r > rchange, then our hypothesis on PDel2 ensures that there is c′2 ∈
PDel2 satisfying the condition for c2 at p and r − rchange. That is,
c′2[1, r

′ − 1] = ctot[1, r
′ − 1] ∧ ∀q ∈ Π : c′2(r

′, q) = c2(r − rchange, p) We
argue that c′ = c′2 ∈ PDel1  PDel2 satis�es the condition for c.

Indeed, ∀r′′ < r′,∀q ∈ Π : c′2(r
′′, q) = Π, and ∀q ∈ Π : c′2(r

′, q) =
c2(r − rchange, p) = c(r, p)

We conclude that the condition still holds for PDel1  PDel2.
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� Let c ∈ PDelω. Let (ci) and (ri) be the collections and indices de�ning
c. We take p ∈ Π, r > 0 and r′ > 0. Let i > 0 be the integer such that
r ∈ [ri + 1, ri+1]. By hypothesis on PDel, There is c′i ∈ PDel satisfying the
condition for ci at p and r − ri. That is, c′i[1, r′ − 1] = ctot[1, r

′ − 1] ∧ ∀q ∈
Π : c′i(r

′, q) = ci(r − ri, p).
We argue that c′i ∈ PDel satis�es the condition for c. Indeed, ∀r′′ ≤ r′,∀q ∈
Π, we have: c′i(r

′′, q) = Π and ∀q ∈ Π : c′i(r
′, q) = ci(r − ri, p) = c(r, p).

We conclude that the condition still holds for PDelω.

C Proofs for Conservative Strategies

C.1 Minimal Conservative Strategies

We use a necessary and su�cient condition for an oblivious strategy to be valid
in the rest of the proofs.

Lemma 8 (Necessary and Su�cient Condition for Validity of a Con-
servative Strategy). Let PDel be a delivered predicate and f be a conservative
strategy. Then f is valid for PDel ⇐⇒ f ⊇ {q ∈ Q | ∃c ∈ PDel, ∃p ∈ Π,∀r ≤
q.round : q(r) = c(r, p)}.

Proof. From the version in [12], f has to satisfy ∀CDel ∈ PDel,∀r > 0,∀j ∈ Π :
〈r, {〈r′, k〉 | r′ ≤ r ∧ k ∈ CDel(r′, j)} 〉 ∈ NextsRf .

We show the equivalence of this condition with our own, which allow us to
conclude by transitivity of equivalence.

� (=⇒) assume our condition holds and prove the one from [12],
Let c ∈ PDel, r > 0 and p ∈ Π: we want to show that q = 〈r, {〈r′, k〉 | r′ ≤
r ∧ k ∈ c(r′, p)} 〉 ∈ NextsRf . That is to say, that all states whose past and
present correspond to this conservative state are accepted by f . Let q′ such
that cons(q′) = q, that is q′.round = q.round = r and ∀r′ ≤ r : q′(r′) =
q(r′) = c(r′, p). We have the collection and the round to apply our condition,
and thus q ∈ f .

� (⇐=) assume the condition from [12] holds and we prove ours.
Let q such that ∃c ∈ PDel, ∃p ∈ Π,∀r ≤ q.round : q(r) = c(r, p).
Then cons(q) = 〈q.round, {〈r, k〉 | r ≤ q.round ∧ k ∈ c(r, p)} 〉. This conser-
vative state is in NextsRf by hypothesis.
We conclude that q ∈ f .

Lemma ((3) Domination of Minimal Conservative Strategy). Let PDel
be a delivered predicate and fmin be its minimal conservative strategy. Then fmin
dominates the conservative strategies for PDel.

Proof. First, fmin is valid for PDel by application of Lemma 8. Next, we take
another conservative strategy f , valid for PDel. Lemma 8 gives us that fmin ⊆ f .
Hence, when fmin allow a change of round, so does f . This entails that all
executions of fmin for PDel are also executions of f for PDel, and thus that
the PHOfmin(PDel) ⊆ PHOf (PDel).
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C.2 Operations Maintain Minimal Conservative Strategy

Theorem ((6) Minimal Conservative Strategy for Union). Let PDel1, PDel2
be two PDels, f1 the minimal conservative strategy for PDel1, and f2 the min-
imal conservative strategy for PDel2. Then f1 ∪ f2 is the minimal conservative
strategy for PDel1 ∪ PDel2.

Proof. We only have to show that f1 ∪ f2 is equal to De�nition 18.

� (⊇) Let q be a state such that ∃c ∈ PDel1 ∪ PDel2,∃p ∈ Π such that
∀r ≤ q.round : q(r) = c(r, p). If c ∈ PDel1, then q ∈ f1, because f1 is the
minimal conservative strategy for PDel1, and by application of Lemma 8.
Thus, q ∈ f1 ∪ f2. If c ∈ PDel2, the same reasoning apply with f2 in place
of f1. We conclude that q ∈ f1 ∪ f2.

� (⊆) Let q ∈ f1 ∪ f2. This means that q ∈ f1 ∨ q ∈ f2. The case where it is in
both can be reduced to any of the two. If q ∈ f1, then by minimality of f1
∃c1 ∈ PDel1,∃p1 ∈ Π such that ∀r ≤ q.round : q(r) = c1(r, p1). PDel1 ⊆
PDel1∪PDel2, thus c1 ∈ PDel1∪PDel2. We found the c and p necessary to
show q is in the minimal conservative strategy for PDel1 ∪PDel2. If q ∈ f2,
the reasoning is similar to the previous case, replacing f1 by f2 and PDel1
by PDel2.

Theorem ((7) Minimal Conservative Strategy for Combination). Let
PDel1, PDel2 be two symmetric PDels, f1 the minimal conservative strategy for
PDel1, and f2 the minimal conservative strategy for PDel2. Then f1

⊗
f2 is

the minimal conservative strategy for PDel1
⊗
PDel2.

Proof. We only have to show that f1
⊗
f2 is equal to De�nition 18.

� (⊇) Let q be a state such that ∃c ∈ PDel1
⊗
PDel2,∃p ∈ Π such that

∀r ≤ q.round : q(r) = c(r, p). By de�nition of c, ∃c1 ∈ PDel1,∃c2 ∈ PDel2 :
c1
⊗
c2 = c. We take q1 such that q1.round = q.round and ∀r > 0 :(

q1(r) = c1(r, p) if r ≤ q.round
q1(r) = q(r) otherwise

)
. We also take q2 such that q2.round =

q.round and ∀r > 0 :

(
q2(r) = c2(r, p) if r ≤ q.round
q2(r) = q(r) otherwise

)
.

Then by validity of f1 and f2 (since they are minimal conservative strategies)
and by application of Lemma 8, we get q1 ∈ f1 and q2 ∈ f2. We also see
that q = q1

⊗
q2. Indeed, for r ≤ q.round, we have q(r) = c(r, p) = c1(r, p)∩

c2(r, p) = q1(r) ∩ q2(r); and for r > q.round, we have q(r) = q(r) ∩ q(r) =
q1(r) ∩ q2(r).
Therefore q ∈ PDel1

⊗
PDel2.

� (⊆) Let q ∈ f1
⊗
f2. By de�nition of f1

⊗
f2, ∃q1 ∈ f1,∃q2 ∈ f2 such that

q1.round = q2.round = q.round and q = q1
⊗
q2.

Since f1 and f2 are minimal conservative strategies of their respective PDels,
∃c1 ∈ PDel1,∃p1 ∈ Π such that ∀r ≤ q.round : q1(r) = c1(r, p1); and
∃c2 ∈ PDel2,∃p2 ∈ Π such that ∀r ≤ q.round : q2(r) = c2(r, p2).
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By symmetry of PDel2, ∃c′2 ∈ PDel2 such that ∀r ≤ q.round : c′2(r, p1) =
c2(r, p2). Hence, ∀r ≤ q.round : q2(r) = c′2(r, p1).
By taking c = c1

⊗
c2, we get ∀r ≤ q.round : q(r) = q1(r) ∩ q2(r) =

c1(r, p1) ∩ c2(r, p1) = c(r, p1).
We found c and p showing that q is in the minimal conservative strategy for
PDel1

⊗
PDel2.

Theorem ((8) Minimal Conservative Strategy for Succession). Let PDel1, PDel2
be two symmetric PDels, f1 the minimal conservative strategy for PDel1, and
f2 the minimal conservative strategy for PDel2. Then f1  f2 is the minimal
conservative strategy for PDel1  PDel2.

Proof. We only have to show that f1  f2 is equal to De�nition 18.

� (⊇) Let q be a state such that ∃c ∈ PDel1  PDel2,∃p ∈ Π such that
∀r′ ≤ q.round : q(r′) = c(r′, p). By de�nition of c, ∃c1 ∈ PDel1,∃c2 ∈
PDel2,∃r > 0 : c = c1[1, r].c2.• If r = 0, then c[1, r] = c2[1, r], and thus ∀r′ ≤ q.round : q(r′) = c2(r

′, p).
The validity of f2 and Lemma 8 then allow us to conclude that q ∈ f2
and thus that q ∈ f1  f2.• If r > 0, we have two cases to consider.
∗ If q.round ≤ r, then ∀r′ ≤ q.round : q(r′) = c1(r

′, p) We conclude
by f1 and application of Lemma 8 that q ∈ f1 and thus that q ∈
f1  f2.

∗ If q.round > r, then c[1, q.round] = c1[1, r].c2[1, q.round− r].
We take q1 such that q1.round = r and ∀r′ > 0 :(
q1(r

′) = c1(r
′, p) if r′ ≤ q1.round

q1(r
′) = q(r′) otherwise

)
. We also take q2 such that q2.round =

q.round−r and ∀r′ > 0 :

(
q2(r

′) = c2(r
′, p) if r′ ≤ q2.round

q2(r
′) = q(r′ − q.round) otherwise

)
.

Then by validity of f1 and f2, and by application of Lemme 8, we
get q1 ∈ f1 and q2 ∈ f2. We also see that q = q1  q2. Indeed, for
r′ ≤ q1.round = r, we have q(r′) = c(r′, p) = c1(r

′, p) = q1(r
′); for

r′ ∈ [q1.round+1, q.round], we have q(r′) = c(r′, p) = c2(r
′− r, p) =

q2(r
′ − r) and for r′ > q.round we have q(r′) = q2(r

′ − q.round).
We conclude that q ∈ f1  f2.

� (⊆) Let q ∈ f1  f2. By de�nition of succession for strategies, there are
three possibilities for q.
• If q ∈ f1, then by minimality of f1 ∃c1 ∈ PDel1,∃p1 ∈ Π : ∀r ≤
q.round : q(r) = c1(r, p1). Let c2 ∈ PDel2. We take c = c1[1, q.round].c2;
we have c ∈ c1  c2.
Then, ∀r ≤ q.round : q(r) = c1(r, p1) = c(r, p1). We found c and p
showing that q is in the minimal conservative strategy for PDel1  
PDel2.

• If q ∈ f2, then by minimality of f2 ∃c2 ∈ PDel2,∃p2 ∈ Π : ∀r ≤
q.round : q(r) = c2(r, p2). As PDel2 ⊆ PDel1  PDel2, thus c2 ∈
PDel1  PDel2.
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We found c and p showing that q is in the minimal conservative strategy
for PDel1  PDel2.

• There are q1 ∈ f1 and q2 ∈ f2 such that q = q1  q2.
Because f1 and f2 are the minimal conservative strategies of their re-
spective PDels, ∃c1 ∈ PDel1,∃p1 ∈ Π such that ∀r ≤ q.round : q1(r) =
c1(r, p1); and ∃c2 ∈ PDel2,∃p2 ∈ Π such that ∀r ≤ q.round : q2(r) =
c2(r, p2).
By symmetry of PDel2, ∃c′2 ∈ PDel2 : ∀r ≤ q.round : c′2(r, p1) =
c2(r, p2). Hence, ∀r ≤ q.round : q2(r) = c′2(r, p1).
By taking c = c1[1, q1.round].c

′
2, we have c ∈ c1  c′2. Then ∀r ≤

q.round = q1.round+ q2.round :
q(r) = q1(r)

= c1(r, p1)
= c(r, p1)

if r ≤ q1.round

q(r) = q2(r − q1.round)
= c′2(r − q1.round, p1)
= c(r, p1)

if r ∈ [q1.round+ 1, q1.round+ q2.round]

.

We found c and p showing that q is in the minimal conservative strategy
for PDel1  PDel2.

Theorem ((9) Minimal Conservative Strategy for Repetition). Let PDel
be a symmetric PDel, and f be its minimal conservative strategy. Then fω is the
minimal conservative strategy for PDelω.

Proof. We only have to show that fω is equal to De�nition 18.

� (⊇) Let q be a state such that ∃c ∈ PDelω,∃p ∈ Π such that ∀r ≤ q.round :
q(r) = c(r, p). By de�nition of repetition, ∃(ci)i ∈N∗ ,∃(ri)i∈N∗ such that
r1 = 0 and ∀i ∈ N∗ : (ci ∈ PDel∧ri < ri+1∧c[ri+1, ri+1] = ci[1, ri+1−ri]).
Let k be the biggest integer such that rk ≤ q.round. We consider two cases.

• If rk = q.round, then c[1, r] = c1[1, r2 − r1].c2[1, r3 − r2]...ck−1[1, rk −
rk−1]. We take for i ∈ [1, k−1] : qi the state such that qi.round = ri+1−ri
and ∀r > 0 :(
qi(r) = ci(r, p) if r ≤ qi.round
qi(r) = q(r +

∑
j∈[1,i−1]

qi.round) otherwise

)
.

By validity of f and by application of Lemma 8, for i ∈ [1, k − 1] we
have qi ∈ f . We see that ∀r > 0 : q(r) = (q1  ...  qk−1)(r). Indeed,
∀r ∈ [ri + 1, ri+1] : q(r) = c(r, p) = ci(r − ri, p) = qi(r − ri); and for
r > q.round : q(r) = qk−1(r −

∑
j∈[1,k−1]

qi.round).

We conclude that q ∈ fω.
• If q.round > rk, we can apply the same reasoning as in the previous case,
the only di�erence being c[1, r] = c1[1, r2− r1].c2[1, r3− r2]...ck−1[1, rk−
rk−1].ck[1, r − rk].

� (⊆) Let q ∈ fω. By de�nition of fω, ∃q1, q2, ..., qk ∈ f : q = q1  q2  ... 
qk.
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Since f is the minimal conservative strategy of PDel, ∃c1, c2, ..., ck ∈ PDel, ∃p1, p2, ..., pk ∈
Π : ∀i ∈ [1, k]qi = 〈qi.round, {〈r, j〉 | r ≤ qi.round ∧ j ∈ ci(r, pi)}.
By symmetry of PDel, for all i ∈ [2, k], ∃c′i ∈ PDel, ∀r ≤ qi.round :
c′i(r, p1) = ci(r, pi).
We take c = c1[1, q1.round].c

′
2[1, q2.round]...c

′
k−1[1, qk−1.round].c

′
k, thus c ∈

c1  c′2  ... c′k. Then ∀r ≤ q.round =
∑

i∈[1,k]
qi.round, if r ∈ [

∑
i∈[1,i−1]

qi.round+

1,
∑

i∈[1,i]
qi.round], we have


q(r) = qi(r −

∑
i∈[1,i−1]

qi.round)

= ci(r −
∑

i∈[1,i−1]
qi.round, p1)

= c(r, p1)

.

We found c and p showing that q is in the minimal conservative strategy for
PDelω.

C.3 Computing Heard-Of Predicates

Theorem ((10) Upper Bounds on HO of Minimal Conservative Strate-
gies). Let PDel, PDel1, PDel2 be PDels containing ctot. Let f

cons, f cons1 , f cons2

be their respective minimal conservative strategies, and fobliv, fobliv1 , fobliv2 be
their respective minimal oblivious strategies. Then:

� PHOfcons
1 ∪fcons

2
(PDel1 ∪ PDel2) ⊆ HOProd(Nextsfobliv

1
∪Nextsfobliv

2
).

� PHOfcons
1  fcons

2
(PDel1  PDel2) ⊆ HOProd(Nextsfobliv

1
∪Nextsfobliv

2
).

� PHOfcons
1

⊗
fcons
2

(PDel1
⊗
PDel2) ⊆ HOProd({n1 ∩ n2 | n1 ∈ Nextsfobliv

1
∧

n2 ∈ Nextsfobliv
2
}).

� PHO(fcons)ω (PDel
ω) ⊆ HOProd(Nextsfobliv ).

Proof. A oblivious strategy is a conservative strategy. Therefore, the minimal
conservative strategy always dominates the minimal oblivious strategy. Hence,
we get an upper bound on the heard-of predicate of the minimal conservative
strategies by applying Theorem 4.
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